【題目】如圖,矩形和等邊三角形中, ,平面平面.
(1)在上找一點,使,并說明理由;
(2)在(1)的條件下,求平面與平面所成銳二面角余弦值.
【答案】(1)證明過程見解析;(2)平面與平面所成銳二面角的余弦值為.
【解析】試題分析:(1) 分別取的中點,利用三角形的中位線的性質(zhì),即可證明面,進而得到;(2)建立空間直角坐標系,利用平面與平面法向量成的角去求解.
試題解析:(1)為線段的中點,理由如下:
分別取的中點,連接,
在等邊三角形中, ,又為矩形的中位線,
,而,
所以面,所以;
(2)由(1)知兩兩互相垂直,建立空間直角坐標系如圖所示, ,三角形為等邊三角形, .
于是,
設(shè)面的法向量,所以,得,
則面的一個法向量,又是線段的中點,
則的坐標為,于是,且,
又設(shè)面的法向量,
由,得,取,則,
平面的一個法向量,
所以,
平面與平面所成銳二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校組織學(xué)生參加某項比賽,參賽選手必須有很好的語言表達能力和文字組織能力.學(xué)校對10位已入圍的學(xué)生進行語言表達能力和文字組織能力的測試,測試成績分為三個等級,其統(tǒng)計結(jié)果如下表:
語言表達能力 文字組織能力 |
|
| |
| 2 | 2 | 0 |
| 1 |
| 1 |
| 0 | 1 |
|
由于部分數(shù)據(jù)丟失,只知道從這10位參加測試的學(xué)生中隨機抽取一位,抽到語言表達能力或文字組織能力為的學(xué)生的概率為.
(Ⅰ)求, 的值;
(Ⅱ)從測試成績均為或 的學(xué)生中任意抽取2位,求其中至少有一位語言表達能力或文字組織能力為的學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為梯形,PD⊥底面ABCD,AB∥CD,AD⊥CD,AD=AB=1,BC=.
(Ⅰ)求證:平面PBD⊥平面PBC;
(Ⅱ)設(shè)H為CD上一點,滿足=2,若直線PC與平面PBD所成的角的正切值為,求二面角H-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且在(﹣∞,0]上是增函數(shù),設(shè)a=f(log47),b=f(log23),c=f(0.20.6),則a,b,c的大小關(guān)系是( )
A.c<b<a
B.b<c<a
C.b<a<c
D.a<b<c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:函數(shù)f(x)對一切實數(shù)x,y都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值.
(2)求f(x)的解析式.
(3)已知a∈R,設(shè)P:當0<x< 時,不等式f(x)+3<2x+a恒成立;Q:當x∈[﹣2,2]時,g(x)=f(x)﹣ax是單調(diào)函數(shù).如果滿足P成立的a的集合記為A,滿足Q成立的a的集合記為B,求A∩RB(R為全集).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線 ( 為參數(shù)), ( 為參數(shù)).
(1)化 , 的方程為普通方程,并說明它們分別表示什么曲線;
(2)若 上的點 對應(yīng)的參數(shù)為 , 為 上的動點,求 中點 到直線 ( 為參數(shù))距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某批次的某種燈泡個,對其壽命進行追蹤調(diào)查,將結(jié)果列成頻率分布表如下,根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于天的燈泡是優(yōu)等品,壽命小于天的燈泡是次品,其余的燈泡是正品.
壽命 (天) | 頻數(shù) | 頻率 |
合計 |
(1)根據(jù)頻率分布表中的數(shù)據(jù),寫出的值;
(2)某人從這個燈泡中隨機地購買了個,求此燈泡恰好不是次品的概率;
(3)某人從這批燈泡中隨機地購買了個,如果這個燈泡的等級情況恰好與按三個等級分層抽樣所得的結(jié)果相同,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某校舉行歌唱比賽時,七位評委為某位選手打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的中位數(shù)和平均數(shù)依次為( )
A.87,86
B.83,85
C.88,85
D.82,86
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x)定義域中任意的x1 , x2(x1≠x2),有如下結(jié)論:
(1)f(x1+x2)=f(x1)f(x2)
(2)f(x1x2)=f(x1)+f(x2)
(3)
當f(x)=ex時,上述結(jié)論中正確結(jié)論的序號是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com