【題目】對(duì)于函數(shù)f(x)定義域中任意的x1 , x2(x1≠x2),有如下結(jié)論:
(1)f(x1+x2)=f(x1)f(x2
(2)f(x1x2)=f(x1)+f(x2
(3)
當(dāng)f(x)=ex時(shí),上述結(jié)論中正確結(jié)論的序號(hào)是

【答案】(1)、(3)
【解析】解:∵f(x)=ex時(shí),f(x)定義域中任意的x1 , x2(x1≠x2),
∴f(x1+x2)= = =f(x1)f(x2),故(1)正確;
f(x1x2)= =f(x1)+f(x2),故(2)不正確;
∵f(x)=ex是增函數(shù),
,故(3)正確.
所以答案是:(1)、(3).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解命題的真假判斷與應(yīng)用(兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形和等邊三角形中, ,平面平面

(1)在上找一點(diǎn),使,并說明理由;

(2)在(1)的條件下,求平面與平面所成銳二面角余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線段PPD//平面MAC,PA=PD=,AB=4.

(I)求證:MPB的中點(diǎn);

(II)求二面角B-PD-A的大;

(III)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某種信息傳輸過程中,用4個(gè)數(shù)字的一個(gè)排列(數(shù)字允許重復(fù))表示一個(gè)信息,不同排列表示不同信息.若所用數(shù)字只有0和1,則與信息0110至多有兩個(gè)對(duì)應(yīng)位置上的數(shù)字相同的信息個(gè)數(shù)為 ( )
A.10
B.11
C.12
D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= ln(1﹣x)的定義域是(
A.(﹣1,1)
B.[﹣1,1)
C.[﹣1,1]
D.(﹣1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直棱柱ABC﹣A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB= AB. (Ⅰ)證明:BC1∥平面A1CD;
(Ⅱ)求二面角D﹣A1C﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x3+ax2﹣bx(a,b∈R),若y=f(x)圖象上的點(diǎn)(1,﹣ )處的切線斜率為﹣4,
(1)求f(x)的表達(dá)式.
(2)求y=f(x)在區(qū)間[﹣3,6]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足對(duì)任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒為0,
(1)求f(1)和f(﹣1)的值;
(2)試判斷f(x)的奇偶性,并加以證明;
(3)若x≥0時(shí)f(x)為增函數(shù),求滿足不等式f(x+1)﹣f(2﹣x)≤0的x取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子里有完全相同的3只紅球和4只黑球,今從袋子里隨機(jī)取球.

)若有放回地取3次,每次取一個(gè)球,求取出2個(gè)紅球1個(gè)黑球的概率;

)若無放回地取3次,每次取一個(gè)球,若取出每只紅球得2分,取出每只黑球得1分,求得分的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案