分析 (1)求解函數(shù)f′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$,(x>0).利用不等式判斷即可.
(2)利用(1)中的結(jié)論可得lnx>1-$\frac{1}{x}$,分別取x=2,3,…,n+1,再利用累加法證得ln(n+1)!$>2n-2(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+…+\frac{1}{\sqrt{n+1}})$,利用數(shù)學(xué)歸納法證明$\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+…+\frac{1}{\sqrt{n+1}}<2\sqrt{n+1}$,即可得到ln(n+1)!>2n-4$\sqrt{n+1}$(n∈N*).
解答 解:(1)∵函數(shù)f(x)=lnx+$\frac{1}{x}$-1.
∴函數(shù)f′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$,(x>0).
由f′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$>0,解得x>1,由f′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$<0,得0<x<1.
∴函數(shù)的單調(diào)遞增區(qū)間(1,+∞),單調(diào)遞減區(qū)間(0,1);
(2)由(1)知,y=f(x)的最小值為f(1)=0,
∴f(x)>0(x>0且x≠1),即lnx>1-$\frac{1}{x}$,
∴l(xiāng)n$\sqrt{2}>1-\frac{1}{\sqrt{2}}$,ln$\sqrt{3}>1-\frac{1}{\sqrt{3}}$,…,ln$\sqrt{n+1}>1-\frac{1}{\sqrt{n+1}}$,
累加得:ln$\sqrt{2}$+ln$\sqrt{3}$+…+ln$\sqrt{n+1}$>(1-$\frac{1}{\sqrt{2}}$)+(1-$\frac{1}{\sqrt{3}}$)+…+(1-$\frac{1}{\sqrt{n+1}}$),
即$\frac{1}{2}ln[2×3×4×…×(n+1)]$$>n-(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+…+\frac{1}{\sqrt{n+1}})$,
∴l(xiāng)n(n+1)!$>2n-2(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+…+\frac{1}{\sqrt{n+1}})$,
下面利用數(shù)學(xué)歸納法證明$\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+…+\frac{1}{\sqrt{n+1}}<2\sqrt{n+1}$.
當(dāng)n=1時(shí),左邊=$\frac{\sqrt{2}}{2}$,右邊=2$\sqrt{2}$,不等式成立;
假設(shè)當(dāng)n=k時(shí)不等式成立,即$\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+…+\frac{1}{\sqrt{k+1}}<2\sqrt{k+1}$,
那么,當(dāng)n=k+1時(shí),$\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+…+\frac{1}{\sqrt{k+1}}+\frac{1}{\sqrt{k+2}}<2\sqrt{k+1}+\frac{1}{\sqrt{k+2}}$.
要證$2\sqrt{k+1}+\frac{1}{\sqrt{k+2}}<2\sqrt{k+2}$,
只需證$2\sqrt{{k}^{2}+3k+2}+1<2k+4$,也就是證8<9,此時(shí)顯然成立.
∴$2\sqrt{k+1}+\frac{1}{\sqrt{k+2}}<2\sqrt{k+2}$,
即$\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+…+\frac{1}{\sqrt{k+2}}<2\sqrt{k+2}$,
綜上,$\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+…+\frac{1}{\sqrt{n+1}}<2\sqrt{n+1}$.
∴l(xiāng)n(n+1)!>2n-4$\sqrt{n+1}$(n∈N*).
點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用數(shù)學(xué)歸納法和分析法證明數(shù)列不等式,屬壓軸題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | -1-$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 7 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | B. | 向右平移$\frac{π}{12}$個(gè)單位長(zhǎng)度 | ||
C. | 向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | D. | 向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com