19.設(shè)集合M={x|x2+3x+2<0},集合{y|y=x2-2},則M∪N=( 。
A.(-2,-1)B.[-2,-1)C.(-2,+∞)D.[-2,+∞)

分析 解不等式得集合M、求值域得集合N,再計算M∪N.

解答 解:集合M={x|x2+3x+2<0}
={x|-2<x<-1}
=(-2,-1),
集合N={y|y=x2-2}
={y|y≥-2}
=[-2,+∞),
則M∪N=[-2,+∞).
故選:D.

點評 本題考查了集合的化簡與運算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)y=lg(1-2x)+$\sqrt{x+3}$的定義域為[-3,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某省高考改革新方案,不分文理科,高考成績實行“3+3”的構(gòu)成模式,第一個“3”是語文、數(shù)學(xué)、外語,每門滿分150分,第二個“3”由考生在思想政治、歷史、地理、物理、化學(xué)、生物6個科目中自主選擇其中3個科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調(diào)查學(xué)生對物理、化學(xué)、生物的選考情況,將“某市某一屆學(xué)生在物理、化學(xué)、生物三個科目中至少選考一科的學(xué)生”記作學(xué)生群體S,從學(xué)生群體S中隨機抽取了50名學(xué)生進行調(diào)查,他們選考物理,化學(xué),生物的科目數(shù)及人數(shù)統(tǒng)計如表:
選考物理、化學(xué)、生物的科目數(shù)123
人數(shù)52520
(I)從所調(diào)查的50名學(xué)生中任選2名,求他們選考物理、化學(xué)、生物科目數(shù)量不相等的概率;
(II)從所調(diào)查的50名學(xué)生中任選2名,記X表示這2名學(xué)生選考物理、化學(xué)、生物的科目數(shù)量之差的絕對值,求隨機變量X的分布列和數(shù)學(xué)期望;
(III)將頻率視為概率,現(xiàn)從學(xué)生群體S中隨機抽取4名學(xué)生,記其中恰好選考物理、化學(xué)、生物中的兩科目的學(xué)生數(shù)記作Y,求事件“y≥2”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,a=2,b=3,∠B=2∠A,則cosA=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.種子發(fā)芽率與晝夜溫差有關(guān).某研究性學(xué)習(xí)小組對此進行研究,他們分別記錄了3月12日至3月16日的晝夜溫差與每天100顆某種種子浸泡后的發(fā)芽數(shù),如表:
日    期3月12日3月13日3月14日3月15日3月16日
晝夜溫差(°C)101113128
發(fā)芽數(shù)(顆)2325302616
(I)從3月12日至3月16日中任選2天,記發(fā)芽的種子數(shù)分別為c,d,求事件“c,d均不小于25”的概率;
(II)請根據(jù)3月13日至3月15日的三組數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehaty=\widehata+\widehatbx$;
(III)若由線性回歸方程得到的估計數(shù)據(jù)與實際數(shù)據(jù)誤差均不超過2顆,則認為回歸方程是可靠的,試用3月12日與16日的兩組數(shù)據(jù)檢驗,(II)中的回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)y=f(x)是定義域為R的偶函數(shù),當(dāng)x≥0時,$f(x)=\left\{\begin{array}{l}\frac{5}{4}sin({\frac{π}{2}x})({0≤x≤1})\\{({\frac{1}{4}})^x}+1({x>1})\end{array}\right.$若關(guān)于x的方程5[f(x)]2-(5a+6)f(x)+6a=0(a∈R)有且僅有6個不同實數(shù)根,則實數(shù)a的取值范圍是(0,1)∪{$\frac{5}{4}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知二次數(shù)f(x)=ax2+bx+c(a≤b)的值域為[0,+∞),則$\frac{a-b+4c}{a+b}$的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,角A、B、C所對的邊分別是a、b、c,若b=$\sqrt{2}$asinB,則角A的大小為$\frac{π}{4}$或$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow{AB}$=$\overrightarrow{a}$+5$\overrightarrow$,$\overrightarrow{BC}$=-3$\overrightarrow{a}$+6$\overrightarrow$,$\overrightarrow{CD}$=4$\overrightarrow{a}$-$\overrightarrow$,則( 。
A.A、B、D三點共線B.A、B、C三點共線C.B、C、D三點共線D.A、C、D三點共線

查看答案和解析>>

同步練習(xí)冊答案