17.已知曲線C1:ρ=3$\sqrt{2}$和曲線C2:ρcos(θ+$\frac{π}{4}$)=$\sqrt{2}$,則C1上到C2的距離等于$\sqrt{2}$的點(diǎn)的個(gè)數(shù)有幾個(gè)?

分析 把極坐標(biāo)方程分別化為直角坐標(biāo)方程,求出圓心到直線的距離與半徑比較即可得出結(jié)論.

解答 解:曲線C1:ρ=3$\sqrt{2}$,化為直角坐標(biāo)方程:x2+y2=18.
曲線C2:ρcos(θ+$\frac{π}{4}$)=$\sqrt{2}$,展開(kāi)化為:$\frac{\sqrt{2}}{2}$(ρcosθ-ρsinθ)=$\sqrt{2}$,化為直角坐標(biāo)方程:x-y-2=0.
圓心(0,0)到直線的距離d=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,
∵圓的半徑r=3$\sqrt{2}$,
∴C1上到C2的距離等于$\sqrt{2}$的點(diǎn)的個(gè)數(shù)有4個(gè).

點(diǎn)評(píng) 本題考查了極坐標(biāo)化為直角坐標(biāo)方程、點(diǎn)到直線的距離公式、直線與圓相交的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,ABCD是直角梯形,AB∥CD,BC⊥CD,CF⊥平面ABCD,DE∥CF,AD⊥DB.
(1)求證:BD⊥AE.
(2)若DE=1,CB=CD=CF=2,求二面角E-BD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線m的極坐標(biāo)方程為ρ=$\frac{a}{2cosθ-sinθ}$(a≠0)
(1)求曲線C的普通方程與直線m的直角坐標(biāo)方程;
(2)當(dāng)a=1時(shí),求曲線C上的點(diǎn)到直線m的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρ2=$\frac{15}{1+2co{s}^{2}θ}$,直線l:y=$\frac{\sqrt{3}}{3}$x.
(I)寫(xiě)出直線l的參數(shù)方程與極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C的兩個(gè)交點(diǎn)分別為A、B,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在極坐標(biāo)系中,已知點(diǎn)A(4,1),B(3,1+$\frac{π}{2}$),則線段AB的長(zhǎng)度|AB|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=log3$\frac{x}{4-x}$.
(1)求證f(x)在區(qū)間(0,4)上是單調(diào)遞增函數(shù);
(2)求f(x)在[2,3)上的值域;
(3)若關(guān)于x的方程f(x)=log2t在x∈[2,3)上有解,求實(shí)數(shù)t的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.若0<a<1,函數(shù)f(x)=loga$\frac{x-1}{x-3}$.
(1)求函數(shù)的定義域;
(2)當(dāng)f(x)>0時(shí),求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知圓C:x2+y2-2x-4y+1=0上存在兩點(diǎn)關(guān)于直線l:x+my+1=0對(duì)稱,經(jīng)過(guò)點(diǎn)M(m,m)作圓C的切線,切點(diǎn)為P,則|MP|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.根據(jù)下列條件,求二次函數(shù)的解析式
(1)已知一次函數(shù)的圖象過(guò)點(diǎn)(-2,0),(1,0),(2,4),求此二次函數(shù)的解析式;
(2)已知二次函數(shù)的圖象過(guò)點(diǎn)(-2,1),(0,1),且頂點(diǎn)到x軸的距離為2,求此二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案