12.在極坐標(biāo)系中,已知點(diǎn)A(4,1),B(3,1+$\frac{π}{2}$),則線段AB的長(zhǎng)度|AB|=5.

分析 由∠AOB=$\frac{π}{2}$,利用勾股定理即可得出.

解答 解:∠AOB=1+$\frac{π}{2}$-1=$\frac{π}{2}$,
∴|AB|=$\sqrt{{4}^{2}+{3}^{2}}$=5.
故答案為:5.

點(diǎn)評(píng) 本題考查了極坐標(biāo)的應(yīng)用、勾股定理,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)A=$\frac{1}{2}$$(\begin{array}{l}{2}&{0}&{0}\\{0}&{1}&{3}\\{0}&{2}&{5}\end{array})$,求|A|,A-1,(A*-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,點(diǎn)$M(2,\frac{π}{3})$的直角坐標(biāo)是( 。
A.$(\sqrt{3},1)$B.$(1,\sqrt{3})$C.$(\frac{{\sqrt{3}}}{2},\frac{1}{2})$D.$(\frac{1}{2},\frac{{\sqrt{3}}}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.圓ρ=sinθ的面積為$\frac{π}{4}$面積單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在直角坐標(biāo)系xOy,以O(shè)為極點(diǎn),x軸的正半軸建立直角坐標(biāo)系,直線l的極坐標(biāo)方程$ρsin(θ+\frac{π}{4})$=2$\sqrt{2}(m+1)$,而曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}cosφ}\\{y=\sqrt{2}sinφ}\end{array}\right.$(其中φ為參數(shù));
(1)若直線l與曲線C恰好有一個(gè)公共點(diǎn),求實(shí)數(shù)m的值;
(2)當(dāng)m=-$\frac{3}{4}$,求直線l被曲線C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知曲線C1:ρ=3$\sqrt{2}$和曲線C2:ρcos(θ+$\frac{π}{4}$)=$\sqrt{2}$,則C1上到C2的距離等于$\sqrt{2}$的點(diǎn)的個(gè)數(shù)有幾個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.過直線x+2y+5=0上一動(dòng)點(diǎn)A(A不在y軸上)作焦點(diǎn)為F(2,0)的拋物線y2=2px的兩條切線,M,N為切點(diǎn),直線AM,AN分別與y軸交于點(diǎn)B,C.
(Ⅰ)求證:BF⊥AM,并求△ABC的外接圓面積的最小值;
(Ⅱ)求證:直線MN恒過一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知△ABC中,A+B=3C,且△ABC的外接圓面積為2π,則△ABC面積的最大值為$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合A,B為兩個(gè)非空實(shí)數(shù)集,定義集合A+B={x+y|x∈A,y∈B},若集合A={0,2,5},B={1,2,6},則集合A+B中元素的個(gè)數(shù)是8.

查看答案和解析>>

同步練習(xí)冊(cè)答案