【題目】已知二次函數(shù),如果存在實(shí)數(shù)m,n(m<n),使得f(x)的定義域和值域分別是[m,n]和[3m,3n],則m+n=_____

【答案】-4

【解析】

根據(jù)題意,分析fx)的對(duì)稱軸以及最大值,進(jìn)而分3種情況討論,判斷出函數(shù)在[m,n]的單調(diào)性,進(jìn)而構(gòu)造出滿足條件的方程,解方程即可得到答案.

根據(jù)題意,二次函數(shù)x﹣1)2的對(duì)稱軸為x=1,最大值為;

分3種情況討論:

,當(dāng)mn≤1時(shí),fx)在[mn]上遞增,則有

解可得m=﹣4,n=0,

此時(shí)m+n=﹣4;

,當(dāng)m<1<n時(shí),fx)的最小值為f(1)3n,解可得n,

m<1<n矛盾,不符合題意;

,當(dāng)1≤mn時(shí),fx)在[m,n]上遞減,

fx)的值域分別是[3m,3n],必有3n,則有n,不符合題意;

m+n=﹣4;

故答案為:﹣4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 常數(shù)λ>0,且λa1an=S1+Sn對(duì)一切正整數(shù)n都成立.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)a1>0,λ=100,當(dāng)n為何值時(shí),數(shù)列 的前n項(xiàng)和最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上有最大值0,最小值,

(1)求實(shí)數(shù)的值;

(2)若關(guān)于x的方程上有解,求實(shí)數(shù)k的取值范圍;

(3)若,如果對(duì)任意都有,試求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一隧道內(nèi)設(shè)雙行線路,其截面由一長方形和一拋物線構(gòu)成。為保證安全,要求行駛車輛頂部(設(shè)為平頂)與隧道頂部(拋物線)在豎直方向上的高度之差至少為0.5m,若行車道總寬度AB6m,請(qǐng)計(jì)算通過隧道的車輛的限制高度(精確度為0.1m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , a1=a.當(dāng)n≥2時(shí),Sn2=3n2an+Sn12 , an≠0,n∈N*
(1)求a的值;
(2)設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn , 且cn=3n1+a5 , 求使不等式4Tn>Sn成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,橢圓上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線 與橢圓交于兩點(diǎn),點(diǎn)(0,1),且=,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在橢圓,直線x,y軸分別交于A,B兩點(diǎn),0為坐標(biāo)原點(diǎn),且△OAB 的面積的最小值為

(1)求橢圓的離心率;

(2) 設(shè)點(diǎn)C、D、F2分別為橢圓的上、下頂點(diǎn)以及右焦點(diǎn),E 為線段OD 的中點(diǎn),直線F2E 與橢圓 相交于M、N 兩點(diǎn),若,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù), 為常數(shù).

(1)確定的值;

(2)求證: 上的增函數(shù);

(3)若對(duì)于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M是滿足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在使得成立。

(1)函數(shù)是否屬于集合M?請(qǐng)說明理由;

(2)函數(shù)M,a的取值范圍;

(3)設(shè)函數(shù),證明:函數(shù)M。

查看答案和解析>>

同步練習(xí)冊(cè)答案