分析 (1)出導(dǎo)數(shù),令導(dǎo)數(shù)小于0,解不等式求出函數(shù)的單調(diào)區(qū)間
(2)先求出端點(diǎn)的函數(shù)值f(-2)與f(2),比較f(2)與f(-2)的大小,然后根據(jù)函數(shù)f(x)在[-1,2]上單調(diào)遞增,在[-2,-1]上單調(diào)遞減,得到f(2)和f(-1)分別是f(x)在區(qū)間[-2,2]上的最大值和最小值,建立等式關(guān)系求出a,從而求出函數(shù)f(x)在區(qū)間[-2,2]上的最小值.
解答 解:(1)∵函數(shù)f(x)的定義域?yàn)镽,f′(x)=-3x2+6x+9.
令f′(x)<0,解得x<-1或x>3,
所以函數(shù)f(x)的單調(diào)遞減區(qū)間為(-∞,-1),(3,+∞).
(2)∵f(x)=-x3+3x2+9x+a,∴f′(x)=-3x2+6x+9≥0,得x2-2x-3≤0,-1≤x≤3,列表如下;
x | -2 | (-2,-1) | -1 | (-1,2) | 2 |
f′(x) | - | 0 | + | ||
f(x) | a-14 | 遞減 | a-5 | 遞增 | a+ 22 |
點(diǎn)評(píng) 本題主要考查導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.以及在閉區(qū)間上的最值問題等基礎(chǔ)知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y2=4x | B. | y2=2x | C. | y2=-4x | D. | y2=-8x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 12 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com