【題目】某電視臺(tái)舉辦青年歌手大獎(jiǎng)賽,有十名評(píng)委打分,已知甲、乙兩名選手演唱后的得分如莖葉圖如圖所示.

(1)從統(tǒng)計(jì)學(xué)的角度,你認(rèn)為甲與乙比較,演唱水平怎樣?

(2)現(xiàn)場(chǎng)有三名點(diǎn)評(píng)嘉賓A,B,C,每位選手可以從中選兩位接受其指導(dǎo),若選手選每位點(diǎn)評(píng)嘉賓的可能性相等,求甲、乙兩名選手選擇的點(diǎn)評(píng)嘉賓恰有一人重復(fù)的概率.

【答案】(1)甲水平的認(rèn)可存在較大的差異; (2).

【解析】

(1)先計(jì)算得到甲演唱水平更高一點(diǎn),再看甲乙的方差得到評(píng)委對(duì)甲水平的認(rèn)可存在較大的差異.(2)利用古典概型的概率公式求解.

(1)由莖葉圖可得,所以甲演唱水平更高一點(diǎn),但由圖分析甲的方差較大,即評(píng)委對(duì)甲水平的認(rèn)可存在較大的差異.

(2)依題意,共有9個(gè)基本事件,如圖所示.

其中,甲、乙兩名選手選擇的點(diǎn)評(píng)嘉賓恰重復(fù)一人包含6個(gè)基本事件.所以所求概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3-3mx+n(m>0)的極大值為6,極小值為2.

(1)求實(shí)數(shù)m,n的值;      

(2)求f(x)在區(qū)間[0,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,是互不相等的非零實(shí)數(shù),求證:由,確定的三條拋物線至少有一條與軸有兩個(gè)不同的交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (﹣3x2+3f′(2))dx,則f′(2)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q是AD的中點(diǎn).

(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在線段PC上是否存在點(diǎn)M,使二面角M﹣BQ﹣C的大小為60°.若存在,試確定點(diǎn)M的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交通指數(shù)是交通擁堵指數(shù)的簡(jiǎn)稱,是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T(mén).其

范圍為[0,10],分別有五個(gè)級(jí)別:T[0,2)暢通;T[2,4)基本暢通; T[4,6)輕度擁堵; T[6,8)中度擁堵;T[8,10]嚴(yán)重?fù)矶?/span>,晚高峰時(shí)段(T2),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的部分直方圖如圖所示.

(1)請(qǐng)補(bǔ)全直方圖,并求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶侣范胃饔卸嗌賯(gè)?

(2)用分層抽樣的方法從交通指數(shù)在[4,6),[6,8),[8,l0]的路段中共抽取6個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);

(3)(2)中抽出的6個(gè)路段中任取2個(gè),求至少一個(gè)路段為輕度擁堵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解小學(xué)生的體能情況,抽取某校一個(gè)年級(jí)的部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)的測(cè)試,將數(shù)據(jù)整理后,畫(huà)出頻率分布直方圖如圖所示.已知圖中從左到右前三個(gè)小組的頻率分別為0.1,0.3,0.4,且第一小組的頻數(shù)為5.

(1)求第四小組的頻率;

(2)求參加這次測(cè)試的學(xué)生的人數(shù);

(3)若一分鐘跳繩次數(shù)在75次以上(含75次)為達(dá)標(biāo),試估計(jì)該年級(jí)學(xué)生跳繩測(cè)試的達(dá)標(biāo)率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知asinA=4bsinB,ac= (a2﹣b2﹣c2).(13分)
(Ⅰ)求cosA的值;
(Ⅱ)求sin(2B﹣A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+3ax2+bx+a2在x=-1處有極值0,則a的值為 ( )

A. 1 B. 2 C. 1或2 D. 3

查看答案和解析>>

同步練習(xí)冊(cè)答案