【題目】已知拋物線 的焦點(diǎn)為,準(zhǔn)線為,三個(gè)點(diǎn), , 中恰有兩個(gè)點(diǎn)在上.

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)過的直線交, 兩點(diǎn),點(diǎn)上任意一點(diǎn),證明:直線, , 的斜率成等差數(shù)列.

【答案】(1) (2)見解析

【解析】試題分析:(1由對(duì)稱關(guān)系可知, 兩點(diǎn)在上,求得拋物線的標(biāo)準(zhǔn)方程為;(2)設(shè)直線的方程為,聯(lián)立拋物線方程,得到韋達(dá)定理表示出直線的斜率,證明滿足等差中項(xiàng)公式即可。

試題解析:

I因?yàn)閽佄锞 關(guān)于x軸對(duì)稱,

所以中只能是兩點(diǎn)在上,

帶入坐標(biāo)易得,所以拋物線的標(biāo)準(zhǔn)方程為

II證明:拋物線的焦點(diǎn)的坐標(biāo)為,準(zhǔn)線的方程為.

設(shè)直線的方程為, .

,可得,所以,

于是,

設(shè)直線的斜率分別為,

一方面,

.

另一方面, .

所以,即直線的斜率成等差數(shù)列

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為對(duì)南康區(qū)和于都縣兩區(qū)縣某次聯(lián)考成績(jī)進(jìn)行分析,隨機(jī)抽查了兩地一共10000名考生的成績(jī),根據(jù)所得數(shù)據(jù)畫了如下的樣本頻率分布直方圖.

(1)求成績(jī)?cè)?/span>的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)平均數(shù);

(3)為了分析成績(jī)與班級(jí)、學(xué)校等方面的關(guān)系,必須按成績(jī)?cè)購倪@10000人中用分層抽樣方法抽出20人作進(jìn)一步分析,則成績(jī)?cè)?/span>的這段應(yīng)抽多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對(duì)價(jià)格(單位:千元/噸)和利潤(rùn)的影響,對(duì)近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如下表:

1

2

3

4

5

7.0

6.5

5.5

3.8

2.2

已知具有線性相關(guān)關(guān)系.

(Ⅰ)求關(guān)于的線性回歸方程;

(Ⅱ)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少噸時(shí),年利潤(rùn)取到最大值?(保留一位小數(shù))

參考數(shù)據(jù)及公式: , ,

, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,四邊形為菱形,對(duì)角線的交點(diǎn)為,四邊形為梯形, .

(Ⅰ)若,求證: 平面;

(Ⅱ)求證:平面平面;

(Ⅲ)若, ,求與平面所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),記函數(shù)的極小值為,若恒成立,求滿足條件的最小整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中, 的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,三個(gè)內(nèi)角滿足.

(1)若頂點(diǎn)的軌跡為,求曲線的方程;

(2)若點(diǎn)為曲線上的一點(diǎn),過點(diǎn)作曲線的切線交圓于不同的兩點(diǎn)(其中的右側(cè)),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的離心率為,且過點(diǎn).

(1)求橢圓的方程;

(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓恒有兩個(gè)交點(diǎn), 且為坐標(biāo)原點(diǎn))?若存在,寫出該圓的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程,其中。

(I)若隨機(jī)選自集合,隨機(jī)選自集合,求方程有實(shí)根的概率;

)若隨機(jī)選自區(qū)間,隨機(jī)選自區(qū)間,求方程有實(shí)根的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知AF平面ABCD,四邊形ABEF為矩形,四邊形ABCD為直角梯形, .

(1)求證: 平面;

(2)線段上是否存在一點(diǎn),使得 ?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案