分析 不等式等價(jià)變化為2a≤$\frac{2{x}^{2}+{y}^{2}}{xy}$=$\frac{2x}{y}$+$\frac{y}{x}$,由x∈[1,2]及y∈[1,4],求得$\frac{1}{2}$≤$\frac{y}{x}$≤4,運(yùn)用基本不等式求得$\frac{2x}{y}$+$\frac{y}{x}$的最小值即可.
解答 解:依題意,不等式2x2-2axy+y2≤0等價(jià)為2a≤$\frac{2{x}^{2}+{y}^{2}}{xy}$=$\frac{2x}{y}$+$\frac{y}{x}$,
設(shè)t=$\frac{y}{x}$,
∵x∈[1,2]及y∈[1,4],
∴$\frac{1}{2}$≤$\frac{1}{x}$≤1,即$\frac{1}{2}$≤$\frac{y}{x}$≤4,
∴$\frac{1}{2}$≤t≤4,
則$\frac{2x}{y}$+$\frac{y}{x}$=t+$\frac{2}{t}$,
∵t+$\frac{2}{t}$≥2$\sqrt{t•\frac{2}{t}}$=2$\sqrt{2}$,
當(dāng)且僅當(dāng)t=$\frac{2}{t}$,即t=$\sqrt{2}$∈[$\frac{1}{2}$,4]時(shí)取等號(hào).
∴2a≤2$\sqrt{2}$,
即a≤$\sqrt{2}$,
故答案為:(-∞,$\sqrt{2}$].
點(diǎn)評(píng) 本題主要考查不等式的應(yīng)用,將不等式恒成立轉(zhuǎn)化為求函數(shù)的最值是解決本題的關(guān)鍵,注意運(yùn)用基本不等式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | M∩N | B. | (∁UM)∩N | C. | M∩(∁UN) | D. | (∁UM)∪(∁UN) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com