F1、F2是雙曲線的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上且滿足∣P F1∣·∣P F2∣=32,則∠F1PF2是(    )
鈍角   (B)直角         (C)銳角      (D)以上都有可能
A
本題考查雙曲線的幾何性質(zhì)
由雙曲線,則;
點(diǎn)在雙曲線上,則,平方得,即;因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823180800085618.png" style="vertical-align:middle;" />,所以
又由余弦定理得
,所以
故正確答案為B
原答案A不正確
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若P為雙曲線的右支上一點(diǎn),且P到左焦點(diǎn)與到右焦點(diǎn)的距離之比為,則P點(diǎn)的橫坐標(biāo)x=(     )
A. 2B. 4C. 4.5D. 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

((本小題滿分12分)
如圖,已知兩定點(diǎn),和定直線,動(dòng)點(diǎn)在直線上的射影為,且

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程并畫草圖;
(Ⅱ)是否存在過(guò)點(diǎn)的直線,使得直線與曲線相交于, 兩點(diǎn),且△的面積等于?如果存在,請(qǐng)求出直線的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線上的一點(diǎn)軸的距離為12,則與焦點(diǎn)間的距離 =______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)定點(diǎn),,動(dòng)點(diǎn)滿足條件,則動(dòng)點(diǎn)的軌跡是( 。.
A.橢圓B.線段C.不存在D.橢圓或線段或不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

、正方體ABCD—A1B1C1D1的側(cè)面AB1內(nèi)有一點(diǎn)P到直線A1B1與直線BC的距離相等如圖(1),則動(dòng)點(diǎn)P所在曲線的形狀大致為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.過(guò)點(diǎn)作斜率為的直線與雙曲線有兩個(gè)不同交點(diǎn).
⑴求的取值范圍?
⑵是否存在斜率,使得向量與雙曲線的一條漸近線的方向向量平行.若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

((本小題滿分12分)
在平面直角坐標(biāo)系xOy中,點(diǎn)P(x,y)為動(dòng)點(diǎn),已知點(diǎn)A(,0),B(-,0),直線PA與PB的斜率之積為定值-
(Ⅰ)求動(dòng)點(diǎn)P的軌跡E的方程;
(Ⅱ)若F(1,0),過(guò)點(diǎn)F的直線l交軌跡E于M、N兩點(diǎn),以MN為對(duì)角線的正方形的第三個(gè)頂點(diǎn)恰在y軸上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

、已知直線.
(1) 當(dāng)時(shí),求的交點(diǎn);
(2)設(shè)曲線經(jīng)過(guò)伸縮變換得到曲線,設(shè)曲線上任一點(diǎn)為,恒成立,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案