【題目】若冪函數(shù)f(x)的圖象過點 ,則函數(shù)g(x)=exf(x)的單調(diào)遞減區(qū)間為( )
A.(-∞,0)
B.(-∞,-2)
C.(-2,-1)
D.(-2,0)

【答案】D
【解析】設(shè)冪函數(shù)f(x)=xα , 因為圖象過點 ,所以 α , α=2,所以f(x)=x2 , 故g(x)=exx2 , 令g′(x)=exx2+2exx=ex(x2+2x)<0,得-2<x<0,故函數(shù)單調(diào)減區(qū)間為(-2,0)
故答案為:D.先求冪函數(shù)f(x),再利用導(dǎo)數(shù)判定函數(shù)g(x)的單調(diào)遞減區(qū)間.導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系:
(1)若f′(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù),f′(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;
(2)若f′(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù),f′(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=(x﹣2)(ax+b)為偶函數(shù),且在(0,+∞)單調(diào)遞增,則f(2﹣x)>0的解集為(
A.{x|x>2或x<﹣2}
B.{x|﹣2<x<2}
C.{x|x<0或x>4}
D.{x|0<x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex-ex(x∈R,且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的單調(diào)性與奇偶性;
(2)是否存在實數(shù)t , 使不等式f(xt)+f(x2t2)≥0對一切x∈R都成立?若存在,求出t;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角△ABO中,設(shè) = = ,| |=| |=1,C為AB上靠近A點的三等分點,過C作AB的垂線l,設(shè)P為垂線上任一點, = ,則 )=(
A.
B.﹣
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 ,設(shè)
(Ⅰ)若f(α)=2,求 的值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足(2a﹣b)cosC=ccosB,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若方程kx-ln x=0有兩個實數(shù)根,則k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人到甲、乙兩市各 個小區(qū)調(diào)查空置房情況,調(diào)查得到的小區(qū)空置房的套數(shù)繪成了如圖的莖葉圖,則調(diào)查中甲市空置房套數(shù)的中位數(shù)與乙市空置房套數(shù)的中位數(shù)之差為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 為圓柱 的母線, 是底面圓 的直徑, 的中點.

(Ⅰ)問: 上是否存在點 使得 平面 ?請說明理由;
(Ⅱ)在(Ⅰ)的條件下,若 平面 ,假設(shè)這個圓柱是一個大容器,有條體積可以忽略不計的小魚能在容器的任意地方游弋,如果小魚游到四棱錐 外會有被捕的危險,求小魚被捕的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于橢圓 ,有如下性質(zhì):若點 是橢圓上的點,則橢圓在該點處的切線方程為 .利用此結(jié)論解答下列問題.
(Ⅰ)求橢圓 的標(biāo)準(zhǔn)方程;
(Ⅱ)若動點 在直線 上,經(jīng)過點 的直線 與橢圓 相切,切點分別為 .求證直線 必經(jīng)過一定點.

查看答案和解析>>

同步練習(xí)冊答案