(本小題滿分12分)已知各項(xiàng)都不相等的等差數(shù)列的前6項(xiàng)和為60,且的等比中項(xiàng).
( I ) 求數(shù)列的通項(xiàng)公式;
(II) 若數(shù)列滿足,且,求數(shù)列的前項(xiàng)和.

(Ⅰ);(Ⅱ) 。

解析試題分析:(Ⅰ)設(shè)等差數(shù)列的公差為(),則…2  
解得……4分∴. ………………5分
(Ⅱ)由,∴,……………6分


…8分∴…10分
…12分
考點(diǎn):等差數(shù)列的簡(jiǎn)單性質(zhì);等比中項(xiàng);通項(xiàng)公式的求法;數(shù)列求和。
點(diǎn)評(píng):若已知遞推公式為的形式求通項(xiàng)公式常用累加法。
注:①若是關(guān)于n的一次函數(shù),累加后可轉(zhuǎn)化為等差數(shù)列求和;
②若是關(guān)于n的二次函數(shù),累加后可分組求和;
③若是關(guān)于n的指數(shù)函數(shù),累加后可轉(zhuǎn)化為等比數(shù)列求和;
④若是關(guān)于n的分式函數(shù),累加后可裂項(xiàng)求和。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列的首項(xiàng)為1,其前n項(xiàng)和為是公比為正整數(shù)的等比數(shù)列,其首項(xiàng)為3,前n項(xiàng)和為. 若.
(1)求,的通項(xiàng)公式;(7分)
(2)求數(shù)列的前n項(xiàng)和.(5分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè){an}是公差不為O的等差數(shù)列,Sn是其前n項(xiàng)和,已知,且
(1)求數(shù)列{an}的通項(xiàng)an
(2)求等比數(shù)列{bn}滿足b1=S1 ,b2=, 求和Tn=a1b1+a2b2+…+anbn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知數(shù)列的前n項(xiàng)和為,且,(=1,2,3…)
(1)求數(shù)列的通項(xiàng)公式;
(2)記,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
公差不為零的等差數(shù)列中,,且、 成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知數(shù)列為等差數(shù)列,且,
(1) 求數(shù)列的通項(xiàng)公式; (2) 令,求證:數(shù)列是等比數(shù)列.
(3)令,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知數(shù)列是公差不為零的等差數(shù)列,成等比數(shù)列
(1)求數(shù)列的通項(xiàng)公式          (2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(文科題)(本小題12分)
(1)在等比數(shù)列{ }中,=162,公比q=3,前n項(xiàng)和=242,求首項(xiàng)和項(xiàng)數(shù)n的值.
(2)已知是數(shù)列的前n項(xiàng)和,,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知數(shù)列的前項(xiàng)和為,且對(duì)一切正整數(shù)都成立.
(1)求,的值;
(2)設(shè),數(shù)列的前項(xiàng)和為,當(dāng)為何值時(shí),最大?并求出的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案