【題目】一次數(shù)學競賽,共有6道選擇題,規(guī)定每道題答對得5分,不答得1分,答錯倒扣1分.一個由若干名學生組成的學習小組參加了這次競賽,這個小組的人數(shù)與總得分情況為( )
A. 當小組的總得分為偶數(shù)時,則小組人數(shù)一定為奇數(shù)
B. 當小組的總得分為奇數(shù)時,則小組人數(shù)一定為偶數(shù)
C. 小組的總得分一定為偶數(shù),與小組人數(shù)無關
D. 小組的總得分一定為奇數(shù),與小組人數(shù)無關
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,若過點且斜率為1的直線與拋物線交于 兩點,且.
(1)求拋物線的方程;
(2)若平行于的直線與拋物線相切于點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)集合,或,對于任意,定義,對任意,定義,記為集合的元素個數(shù),求的值;
(2)在等差數(shù)列和等比數(shù)列中,,,是否存在正整數(shù),使得數(shù)列的所有項都在數(shù)列中,若存在,求出所有的,若不存在,說明理由;
(3)已知當時,有,根據(jù)此信息,若對任意,都有,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,圓的參數(shù)方程為為參數(shù)),直線經(jīng)過點,且傾斜角為.
(1)寫出直線的參數(shù)方程和圓的標準方程;
(2)設直線與圓相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓:的離心率為,設,分別為橢圓的右頂點,下頂點,的面積為1.
(1)求橢圓的方程;
(2)已知不經(jīng)過點的直線:交橢圓于,兩點,線段的中點為,若,求證:直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左焦點為,右焦點為,設M,N是橢圓C上位于x軸上方的兩動點,且直線與直線平行,與交于點D.
(Ⅰ)求和的坐標;
(Ⅱ)求的最小值;
(Ⅲ)求證:是定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,是橢圓的左、右焦點,橢圓過點.
(1)求橢圓的方程;
(2)過點的直線(不過坐標原點)與橢圓交于,兩點,且點在軸上方,點在軸下方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知如圖,直線是拋物線()和圓C:的公切線,切點(在第一象限)分別為P、Q.F為拋物線的焦點,切線交拋物線的準線于A,且.
(1)求切線的方程;
(2)求拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切且被軸截得的弦長為,圓的面積小于13.
(Ⅰ)求圓的標準方程;
(Ⅱ)設過點的直線與圓交于不同的兩點,以為鄰邊作平行四邊形.是否存在這樣的直線,使得直線與恰好平行?如果存在,求出的方程;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com