(1)解:已知數(shù)列{a
n}為等比數(shù)列,公比為q,S
n為前n項(xiàng)和,故S
n=a
1+a
1q+
+…+
①.
當(dāng)q=1時(shí),S
n=n a
1.
當(dāng)q≠1時(shí),qS
n=a
1q+
+…
+
②.
①-②可得 (1-q)S
n=a
1-
=a
1(1-q
n),
∴S
n=
(q≠1).
綜上可得
.
(2)解:S
n=n
2-n(n∈N
*),
∴a
1=s
1=0,n≥2時(shí),a
n=S
n-s
n-1=2(n-1).
綜上可得 a
n=2(n-1).
又?jǐn)?shù)列{b
n}滿足:a
n+log
3n=log
3b
n,∴l(xiāng)og
3b
n -log
3n=a
n=2(n-1),
∴
=3
2(n-1),b
n=n×3
2(n-1).
故數(shù)列{b
n}的前n項(xiàng)和T
n =1×3
0+2×3
2+3×3
4+…+n3
2(n-1),
故9T
n =1×3
2+2×3
4+3×3
6+…+(n-1)3
2(n-1)+n 3
2n,
相減可得-8 T
n =1+3
2+3
4+…+3
2(n-1)-n 3
2n=
-n 3
2n,
∴T
n =
.
分析:(1)由于S
n=a
1+a
1q+
+…+
①,故當(dāng)q=1時(shí),S
n=n a
1.當(dāng)q≠1時(shí),qS
n=a
1q+
+…
+
②,兩式相減求得S
n的解析式.
(2)根據(jù) a
n 與 S
n 的關(guān)系求出 a
n,再由a
n+log
3n=log
3b
n,及對(duì)對(duì)數(shù)的運(yùn)算性質(zhì)求出b
n=n3
2(n-1).用錯(cuò)位相減法求出數(shù)列{b
n}的前n項(xiàng)和T
n .
點(diǎn)評(píng):本題主要考查對(duì)數(shù)的運(yùn)算性質(zhì)的應(yīng)用,等比數(shù)列的通項(xiàng)公式,用錯(cuò)位相減法進(jìn)行數(shù)列求和,屬于中檔題.