18.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,BC邊上的高與BC邊長(zhǎng)相等,則$\frac{c}$+$\frac{c}$$+\frac{{a}^{2}}{bc}$的最大值是2$\sqrt{2}$.

分析 利用余弦定理與三角形的面積公式,化簡(jiǎn)$\frac{c}$+$\frac{c}$$+\frac{{a}^{2}}{bc}$為C的三角函數(shù),通過(guò)兩角和的正弦公式化簡(jiǎn)函數(shù)為一個(gè)角的一個(gè)三角函數(shù)的形式,求出表達(dá)式的最大值.

解答 解:在△ABC中,AB=c,AC=b,BC=a,
所以 $\frac{c}$+$\frac{c}$$+\frac{{a}^{2}}{bc}$=$\frac{{c}^{2}+^{2}+{a}^{2}}{bc}$,
因?yàn)閍2=c2+b2-2bccosA,
所以:$\frac{{c}^{2}+^{2}+{a}^{2}}{bc}$=$\frac{2{a}^{2}+2bccosA}{bc}$,
△ABC中,BC邊上的高與BC邊的長(zhǎng)相等,
所以:$\frac{1}{2}$bcsinA=$\frac{1}{2}$a2,
即bcsinA=a2
∴$\frac{2{a}^{2}+2bccosA}{bc}$=$\frac{2bcsinA+2bccosA}{bc}$=2sinA+2cosA=2$\sqrt{2}$sin(A+$\frac{π}{4}$)≤2$\sqrt{2}$.
則$\frac{c}$+$\frac{c}$$+\frac{{a}^{2}}{bc}$的最大值為:2$\sqrt{2}$.
故答案為:2$\sqrt{2}$

點(diǎn)評(píng) 本題考查余弦定理與三角形的面積公式的應(yīng)用,兩角和的正弦函數(shù)的應(yīng)用,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列函數(shù)中,在其定義域上是偶函數(shù)的是(  )
A.y=sinxB.y=|sinx|C.y=tanxD.y=cos(x-$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.用反證法證明命題:“若a,b∈R,則函數(shù)f(x)=x3+ax-b至少有一個(gè)零點(diǎn)”時(shí),假設(shè)應(yīng)為(  )
A.函數(shù)沒有零點(diǎn)B.函數(shù)有一個(gè)零點(diǎn)
C.函數(shù)有兩個(gè)零點(diǎn)D.函數(shù)至多有一個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{y-1≥0}\\{x-y+2≥0}\\{x+4y-8≤0}\end{array}\right.$,且目標(biāo)函數(shù)z=ax+y僅在點(diǎn)(4,1)處取得最大值,則原點(diǎn)O到直線ax-y+17=0的距離d的取值范圍是( 。
A.(4$\sqrt{17}$,17]B.(0,4$\sqrt{17}$)C.($\frac{17\sqrt{2}}{2}$,17]D.(0,$\frac{17\sqrt{2}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知復(fù)數(shù)z滿足$\frac{z}{1+i}$=2-i,則z=3+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某企業(yè)開發(fā)一種新產(chǎn)品,現(xiàn)準(zhǔn)備投入適當(dāng)?shù)膹V告費(fèi),對(duì)產(chǎn)品進(jìn)行促銷,在一年內(nèi),預(yù)計(jì)年銷量Q(萬(wàn)件)與廣告費(fèi)x(萬(wàn)件)之間的函數(shù)關(guān)系為$Q=\frac{3x-2}{x}(x>0)$,已知生產(chǎn)此產(chǎn)品的年固定投入為3萬(wàn)元,每年產(chǎn)1萬(wàn)件此產(chǎn)品仍需要投入32萬(wàn)元,若年銷售額為(32Q+3)•150%+x•50%,而當(dāng)年產(chǎn)銷量相等.
(1)試將年利潤(rùn)P(萬(wàn)件)表示為年廣告費(fèi)x(萬(wàn)元)的函數(shù);
(2)當(dāng)年廣告費(fèi)投入多少萬(wàn)元時(shí),企業(yè)年利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.某程序框圖如圖所示,該程序運(yùn)行后輸出的k的值是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=-3,則$\overrightarrow$在$\overrightarrow{a}$方向上的投影為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.[普通高中]已知兩個(gè)等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為An和Bn,且$\frac{{A}_{n}}{{B}_{n}}$=$\frac{5n+3}{n+3}$,則$\frac{{a}_{5}}{_{5}}$的值為( 。
A.2B.$\frac{7}{2}$C.4D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案