設(shè)函數(shù),數(shù)列項和,,數(shù)列,滿足.(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè)數(shù)列的前項和為,數(shù)列的前項和為,證明: 。

(Ⅰ);(Ⅱ)先放縮再求和即可得.

解析試題分析:(Ⅰ)利用代換即可得是公比為的等比數(shù)列,再利用通項公式求解即可得;(Ⅱ)先得到,再用錯位相減法求解即可得證.
試題解析:(Ⅰ)由得:是以為公比的等
 .                                   4分
(Ⅱ)由得:
      6分
…+,
用錯位相減法可求得:
 .                        12分
考點:1.數(shù)列的性質(zhì); 2.錯位相減法求和.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項和滿足,其中.
⑴若,求;
⑵若,求證:,并給出等號成立的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等差數(shù)列{am}的前m項和為Sm,已知S3=,且S1,S2,S4成等比數(shù)列,
(1)求數(shù)列{am}的通項公式.
(2)若{am}又是等比數(shù)列,令bm= ,求數(shù)列{bm}的前m項和Tm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的各項均為正數(shù),為其前項和,對于任意的,總有成等差數(shù)列.
(1)求
(2)求數(shù)列的通項公式;
(3)設(shè)數(shù)列的前項和為,且,求證:對任意正整數(shù),總有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項和為,且的等差中項,等差數(shù)列滿足,.
(1)求數(shù)列、的通項公式;
(2)設(shè),數(shù)列的前項和為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知數(shù)列的前項和
(1)證明:數(shù)列是等差數(shù)列;
(2)若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

四川省廣元市2008年新建住房400萬平方米,其中有250萬平方米是中低價房,預(yù)計在今后的若干年內(nèi),該市每年新建住房面積平均比上一年增長8%.另外,每年新建住房中,中低價房的面積均比上一年增加50萬平方米.那么,到哪一年底,
(1)該市歷年所建中低價房的累計面積(以2008年為累計的第一年)將首次不少于4 750萬平方米?
(2)到2013年底,當(dāng)年建造的中低價房的面積占該年建造住房面積的比例首次大于85%嗎?為什么
(參考數(shù)據(jù):1.084≈1.36,1.085≈1.47,1.086≈1.59)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列是等差數(shù)列,是各項均為正數(shù)的等比數(shù)列,且
(1)求數(shù)列的通項公式;
(2)若為數(shù)列的前項和,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列滿足
(Ⅰ)求,并由此猜想的一個通項公式,證明你的結(jié)論;
(II)若,不等式對一切都成立,求正整數(shù)m的最大值。

查看答案和解析>>

同步練習(xí)冊答案