19.冪函數(shù)f(x)=(m2-4m+4)x${\;}^{{m^2}-6m+8}}$在(0,+∞)為增函數(shù),則m的值為(  )
A.1或3B.1C.3D.2

分析 根據(jù)冪函數(shù)的定義與性質(zhì),得出關(guān)于m的不等式組,求出m的取值范圍即可.

解答 解:冪函數(shù)f(x)=(m2-4m+4)x${\;}^{{m^2}-6m+8}}$在(0,+∞)為增函數(shù),
∴$\left\{\begin{array}{l}{{m}^{2}-4m+4=1}\\{{m}^{2}-6m+8>0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{m=1或m=3}\\{m<2或m>4}\end{array}\right.$,
所以m的值為1.
故選:B.

點(diǎn)評 本題考查了冪函數(shù)的定義與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知隨機(jī)變量ξ服從正態(tài)分布,且方程x2+2x+ξ=0有實(shí)數(shù)解得概率為$\frac{1}{2}$,若P(ξ≤2)=0.75,則P(0≤ξ≤2)=0.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥CD,AB⊥BC,AB=PA=PD=3,CD=1,BC=4,E為線段AB上一點(diǎn),AE=$\frac{1}{2}$BE,F(xiàn)為PD的中點(diǎn).
(1)證明:PE∥平面ACF;
(2)求二面角A-CF-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=ax2-2x+2,對于滿足1<x<4的一切x值都有f(x)>0,則實(shí)數(shù)a的取值范圍為$({\frac{1}{2},+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,B=$\frac{π}{4}$,BC邊上的高等于$\frac{1}{3}$BC,則cosA=-$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)化簡f(a)=$\frac{sin(π-α)cos(π+α)cos(\frac{3π}{2}+α)}{cos(3π-α)sin(3π+α)}$;
(2)求f(-$\frac{23π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對邊,a=2,且有(2+b)(sinA-sinB)=(c-b)sinC.
(Ⅰ)求角A的值;
(Ⅱ)求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若拋物線y2=4x上的點(diǎn)P到焦點(diǎn)的距離是10,則P的坐標(biāo)(  )
A.(9,6)B.(9,6)或(9,-6)C.(9,-6)D.(6,-6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=|x-2|.
(Ⅰ)求不等式f(x+1)+f(x+3)>2的解集M;
(Ⅱ)若a∈M,|b|<2,求證:$f(ab)<|a|•f(\frac{a})$.

查看答案和解析>>

同步練習(xí)冊答案