分析 由題意把A、B、C、P擴展為三棱柱如圖,求出上下底面中心連線的中點與A的距離為球的半徑,然后求出球的表面積
解答 解:由題意畫出幾何體的圖形如圖,
把A、B、C、P擴展為三棱柱,
上下底面中心連線的中點與A的距離為球的半徑,
PA=2AB=6,OE=3,△ABC是正三角形,∴AB=3,
AE=$\frac{2}{3}\sqrt{A{B}^{2}-(\frac{1}{2}AB)^{2}}=\sqrt{3}$,AO=$\sqrt{{3}^{2}+(\sqrt{3})^{2}}=2\sqrt{3}$.
所求球的表面積為:4π(2$\sqrt{3}$)2=48π.
故答案為:48π.
點評 本題考查球的內(nèi)接體與球的關(guān)系,考查空間想象能力,利用割補法結(jié)合球內(nèi)接多面體的幾何特征求出球的半徑是解題的關(guān)鍵.屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[-\frac{1}{12},-\frac{4}{49})$ | B. | $[-\frac{1}{12},0]$ | C. | $(-\frac{4}{49},0]$ | D. | $[-\frac{4}{49},0]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | $\frac{7}{2}$ | C. | 4 | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com