14.在正方體ABCD-A1B1C1D1中(如圖),已知點(diǎn)P在直線BC1上運(yùn)動(dòng),則下列四個(gè)命題:
①三棱錐A-D1PC的體積不變;
②直線AP與平面ACD1所成的角的大小不變;
③二面角P-AD1-C的大小不變;
④M是平面A1B1C1D1上到點(diǎn)D和C1距離相等的點(diǎn),則M點(diǎn)的軌跡是直線A1D1
其中真命題的編號(hào)是①③④(寫(xiě)出所有真命題的編號(hào))

分析 ①:點(diǎn)P是直線BC1的動(dòng)點(diǎn),△AD1P的面積是定值,而點(diǎn)C到平面AD1P的距離也是定值,故得到結(jié)論;
②:可以從向量的角度進(jìn)行判斷;
③:平面PD1A平面ACD1的法向量的夾角是不變的,得到結(jié)論.
④:由M是平面A1B1C1D1上到點(diǎn)D和C1距離相等的點(diǎn),M點(diǎn)的軌跡是線段DC1在空間的垂直平分線與面A1B1C1D1的交點(diǎn).

解答 解:對(duì)于①:∵點(diǎn)P是直線BC1的動(dòng)點(diǎn),∴△AD1P的面積是定值,∵點(diǎn)C到平面AD1P的距離不變,∴①正確;
對(duì)于②:∵隨著P點(diǎn)的移動(dòng),$\overrightarrow{AP}$與平面ACD1的法向量的夾角也是變化的,∴②錯(cuò)誤;
對(duì)于③:∵平面PD1A平面ACD1的法向量的夾角是不變的,∴③正確;
對(duì)于④:∵M(jìn)是平面A1B1C1D1上到點(diǎn)D和C1距離相等的點(diǎn),∴M點(diǎn)的軌跡是線段DC1在空間的垂直平分線與面A1B1C1D1的交點(diǎn),故其軌跡是直線A1D1,故④正確.
故答案為,①③④

點(diǎn)評(píng) 本題考查了空間點(diǎn)、線、面的位置關(guān)系,空間軌跡問(wèn)題,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-2x,x≤0\\ \frac{{\sqrt{x}}}{e^x},x>0\end{array}\right.$,若關(guān)于x的方程f(x)-a+1=0恰有3個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為( 。
A.$(1,\frac{{\sqrt{2e}}}{2e}+1)$B.$(1,\frac{1}{e}+1)$C.$(0,\frac{1}{2e}+1)$D.$(\frac{1}{e},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=$\frac{9}{8cos2x+16}$-sin2x,則當(dāng)f(x)取最小值時(shí)cos2x的值為$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在矩形ABCD中,AB=2,AD=1,E為CD的中點(diǎn),將△ADE沿AE折起,使平面ADE⊥平面ABCE,得到幾何體D-ABCE,M點(diǎn)是此時(shí)BD的中點(diǎn).

(1)求異面直BE和CM所成角的大;
(2)求BD與平面ADE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.以下函數(shù)中在區(qū)間(0,+∞)上單調(diào)遞增的函數(shù)是( 。
A.y=|x|+1B.y=$\frac{1}{x}$C.y=-x2+1D.y=-x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,四棱錐A-OBCD中,已知平面AOC⊥面OBCD,AO=2$\sqrt{3}$,OB=BC=2,CD=4,∠OBC=∠BCD=120°.
(I)求證:平面ACD⊥平面AOC;
(II)直線AO與平面OBCD所成角為60°,求二面角A-BC-D的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.f(x)=4x2-mx+5在區(qū)間[-2,+∞)上是增函數(shù),求m的范圍m≤-16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.棱錐P-ABC的四個(gè)頂點(diǎn)均在同一個(gè)球面上,其中PA⊥平面ABC,△ABC是正三角形,PA=2BC=6,則該球的表面積為48π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知過(guò)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)F作傾斜角120°的直線l交橢圓為A,B,若$\overrightarrow{AF}$=2$\overrightarrow{FB}$,則橢圓的離心率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案