【題目】已知定義域為R的函數(shù)是奇函數(shù).

1)求實數(shù)a的值;

2)判斷該函數(shù)在定義域R上的單調(diào)性(不要求寫證明過程).

3)若對任意的,不等式恒成立,求實數(shù)k的取值范圍;

4)設(shè)關(guān)于x的函數(shù)有零點,求實數(shù)b的取值范圍.

【答案】1;(2)減函數(shù);(3;(4

【解析】

1)利用可構(gòu)造方程求得結(jié)果;

2)通過分離常數(shù)的方法可判斷出函數(shù)的單調(diào)性;

3)利用奇偶性將不等式變?yōu)?/span>,利用單調(diào)性得到自變量的大小關(guān)系,利用分離變量的方式將問題轉(zhuǎn)化為,通過求解二次函數(shù)的最小值求得結(jié)果;

4)利用奇偶性將問題轉(zhuǎn)化為方程有根,根據(jù)單調(diào)性得到方程有根,進而得到;根據(jù)二次函數(shù)型的復(fù)合函數(shù)的值域求解方法可求得,從而求得結(jié)果.

1為定義在上的奇函數(shù) ,解得:

2)由(1)知:

上的增函數(shù) 上的減函數(shù)

上的減函數(shù)

(3)由得:

由(2)知:上的減函數(shù) ,即

,即的取值范圍為

4有零點等價于方程有根

即方程有根

上的減函數(shù) ,即

時,取得最小值,最小值為

有根,則

即當時,函數(shù)有零點

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù),現(xiàn)分別從集合中隨機取一個數(shù),得到有序數(shù)對.

1)若,,求方程有實數(shù)根的概率;

2)若,,求函數(shù)在區(qū)間上是減函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)對定義域內(nèi)的每一個值,在其定義域內(nèi)都存在唯一的,使成立,則該函數(shù)為“依附函數(shù)”.

(1)判斷函數(shù)是否為“依附函數(shù)”,并說明理由;

(2)若函數(shù)在定義域上“依附函數(shù)”,求的取值范圍;

(3)已知函數(shù)在定義域上為“依附函數(shù)”.若存在實數(shù),使得對任意的,不等式都成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從全校參加科技知識競賽初賽的學生試卷中,抽取一個樣本,考察競賽的成績分布.將樣本分成5組,繪成頻率分布直方圖(如圖),圖中從左到右各小組的小長方形的高之比是,最后一組的頻數(shù)是6.請結(jié)合頻率分布直方圖提供的信息,解答下列問題:

1)樣本的容量是多少?

2)求樣本中成績在分的學生人數(shù);

3)從樣本中成績在90.5分以上的同學中隨機地抽取2人參加決賽,求最高分甲被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面 平面,BC//平面PAD, ,.

求證:(1) 平面;

(2)平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的一個頂點為拋物線的頂點, , 兩點都在拋物線上,且.

(1)求證:直線必過一定點;

(2)求證: 面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某個比賽安排4名志愿者完成6項工作,每人至少完成一項,每項工作由一人完成,則不同的安排方式有多少種(

A.7200B.4800C.2640D.1560

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,其中.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若存在使得,求實數(shù)的取值范圍;

(Ⅲ)若當時恒有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】生活中萬事萬物都是有關(guān)聯(lián)的,所有直線中有關(guān)聯(lián)直線,所有點中也有相關(guān)點,現(xiàn)在定義:平面內(nèi)如果兩點、都在函數(shù)的圖像上,而且滿足、兩點關(guān)于原點對稱,則稱點對(、)是函數(shù)的“相關(guān)對稱點對”(注明:點對(、)與(、)看成同一個“相關(guān)對稱點對”).已知函數(shù),則這個函數(shù)的“相關(guān)對稱點對”有(

A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案