分析 (1)以點(diǎn)A為坐標(biāo)原點(diǎn),AB所在直線為x軸,建立平面直角坐標(biāo)系.設(shè)太陽(yáng)光線所在直線方程為$y=-\frac{3}{4}x+b$,利用直線與圓相切,求出直線方程,令x=30,得EG=1.5米<2.5米,即可得出結(jié)論;
(2)欲使活動(dòng)中心內(nèi)部空間盡可能大,則影長(zhǎng)EG恰為2.5米,即可求出截面面積最大
解答 解:如圖所示,以點(diǎn)A為坐標(biāo)原點(diǎn),AB所在直線為x軸,建立平面直角坐標(biāo)系.
(1)因?yàn)锳B=18,AD=6,所以半圓的圓心為H(9,6),
半徑r=9.設(shè)太陽(yáng)光線所在直線方程為$y=-\frac{3}{4}x+b$,
即3x+4y-4b=0,…(2分)
則由$\frac{|27+24-4b|}{{\sqrt{{3^2}+{4^2}}}}=9$,
解得b=24或$b=\frac{3}{2}$(舍).
故太陽(yáng)光線所在直線方程為$y=-\frac{3}{4}x+24$,…(5分)
令x=30,得EG=1.5米<2.5米.
所以此時(shí)能保證上述采光要求…(7分)
(2)設(shè)AD=h米,AB=2r米,則半圓的圓心為H(r,h),半徑為r.
欲使活動(dòng)中心內(nèi)部空間盡可能大,則影長(zhǎng)EG恰為2.5米,則此時(shí)點(diǎn)G為(30,2.5),
設(shè)過(guò)點(diǎn)G的上述太陽(yáng)光線為l1,則l1所在直線方程為y-$\frac{5}{2}$=-$\frac{3}{4}$(x-30),
即3x+4y-100=0…(10分)
由直線l1與半圓H相切,得$r=\frac{|3r+4h-100|}{5}$.
而點(diǎn)H(r,h)在直線l1的下方,則3r+4h-100<0,
即$r=-\frac{3r+4h-100}{5}$,從而h=25-2r…(13分)
又$S=2rh+\frac{1}{2}π{r^2}=2r(25-2r)+\frac{3}{2}×{r^2}$=$-\frac{5}{2}{r^2}+50r=-\frac{5}{2}{(r-10)^2}+250≤250$.
當(dāng)且僅當(dāng)r=10時(shí)取等號(hào).
所以當(dāng)AB=20米且AD=5米時(shí),可使得活動(dòng)中心的截面面積最大…(16分)
點(diǎn)評(píng) 本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,考查直線與圓的位置關(guān)系,考查配方法的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com