6.${∫}_{1}^{e}$($\frac{1}{x}$+x)dx=$\frac{1}{2}$e2+$\frac{1}{2}$.

分析 根據(jù)定積分的計算法則計算即可.

解答 解:${∫}_{1}^{e}$($\frac{1}{x}$+x)dx=(lnx+$\frac{1}{2}{x}^{2}$)|${\;}_{1}^{e}$=lne+$\frac{1}{2}$e2-(ln1+$\frac{1}{2}$)=$\frac{1}{2}$e2+$\frac{1}{2}$
故答案為:$\frac{1}{2}$e2+$\frac{1}{2}$.

點評 本題考查了定積分的運算,關(guān)鍵是求出原函數(shù),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.當(dāng)x>1時,2log2x+$\frac{1}{lo{g}_{2}x}$的最小值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$a={(\frac{1}{5})^{-\frac{1}{2}}},b={log_5}\frac{1}{3},c={log_{\frac{1}{2}}}\frac{1}{3}$,則a,b,c的大小關(guān)系是( 。
A.a>c>bB.c>a>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=x|x-a|,若對任意x1∈[2,3],x2∈[2,3],x1≠x2恒有$f(\frac{{{x_1}+{x_2}}}{2})>\frac{{f({x_1})+f({x_2})}}{2}$,則實數(shù)a的取值范圍為[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)M為平面上以A(4,1),B(-1,-6),C(-3,2)三點為頂點的三角形區(qū)域(包括內(nèi)部和邊界),當(dāng)點(x,y)在M上變化時,z=4x-3y的取值范圍是(  )
A.[-18,13]B.[0,14]C.[13,14]D.[-18,14]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)tanα=$\frac{3}{4}$(α為第三象限角),則sin($\frac{π}{4}$+α)=( 。
A.$\frac{7}{10}$$\sqrt{2}$B.-$\frac{7}{10}$$\sqrt{2}$C.-$\frac{\sqrt{2}}{10}$D.$\frac{\sqrt{2}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=a•($\frac{1}{3}$)x+bx2+cx(a∈R,b≠0,c∈R),若{x|f(x)=0}={x|f(f(x))=0}≠∅,則實數(shù)c的取值范圍為[0,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$f(x)=\sqrt{4-{x^2}}$,g(x)=|x-2|,則下列函數(shù)中是奇函數(shù)的為(  )
A.h(x)=f(x)+g(x)B.h(x)=f(x)•g(x)C.$h(x)=\frac{g(x)}{2-f(x)}$D.$h(x)=\frac{f(x)}{2-g(x)}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某商場在今年元宵節(jié)的促銷活動中,對該天9時到14時的銷售額進(jìn)行統(tǒng)計,其頻率分布直方圖如圖所示.已知9時到10時的銷售額為5萬元,則11時到13時的銷售額為( 。
A.20萬元B.32.5萬元C.35萬元D.40萬元

查看答案和解析>>

同步練習(xí)冊答案