15.已知$f(x)=\sqrt{4-{x^2}}$,g(x)=|x-2|,則下列函數(shù)中是奇函數(shù)的為( 。
A.h(x)=f(x)+g(x)B.h(x)=f(x)•g(x)C.$h(x)=\frac{g(x)}{2-f(x)}$D.$h(x)=\frac{f(x)}{2-g(x)}$

分析 根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可.

解答 解:函數(shù)f(x)的定義域?yàn)閇-2,2],函數(shù)f(x)為奇函數(shù),g(x)為非奇非偶函數(shù),
則A.h(x)=f(x)+g(x)為非奇非偶函數(shù),不滿足條件.
B.h(x)=f(x)•g(x)為非奇非偶函數(shù),不滿足條件.
C.$h(x)=\frac{g(x)}{2-f(x)}$=$\frac{|x-2|}{2-\sqrt{4-{x}^{2}}}$,則函數(shù)的定義域?yàn)閇-2,0)∪(0,2],
此時(shí)h(x)=$\frac{2-x}{2-\sqrt{4-{x}^{2}}}$=$\frac{(2-x)(2+\sqrt{4-{x}^{2}})}{4-(4-{x}^{2})}$=$\frac{(2-x)(2+\sqrt{4-{x}^{2}})}{{x}^{2}}$,則函數(shù)h(x)為非奇非偶函數(shù),不滿足條件.
D.$h(x)=\frac{f(x)}{2-g(x)}$=$\frac{\sqrt{4-{x}^{2}}}{2-|x-2|}$=$\frac{\sqrt{4-{x}^{2}}}{2+x-2}$=$\frac{\sqrt{4-{x}^{2}}}{x}$,函數(shù)的定義域?yàn)閇-2,0)∪(0,2],此時(shí)函數(shù)h(x)為奇函數(shù),
故選:D

點(diǎn)評 本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.一企業(yè)由于生產(chǎn)某種產(chǎn)品的需要欲購進(jìn)某種設(shè)備若干臺,該設(shè)備運(yùn)行臺數(shù)只與月產(chǎn)量有關(guān),根據(jù)調(diào)查統(tǒng)計(jì),該設(shè)備運(yùn)行1臺的概率為$\frac{1}{3}$;運(yùn)行2臺的概率為$\frac{1}{2}$;運(yùn)行3臺的概率為$\frac{1}{6}$,且每月產(chǎn)量相互沒有影響.
(1)求未來3個(gè)月中,至多有1個(gè)月運(yùn)行3臺設(shè)備的概率
(2)若某臺設(shè)備運(yùn)行,則當(dāng)月為企業(yè)創(chuàng)造利潤12萬元,否則虧損6萬元,欲使企業(yè)月總利潤的均值最大,購該種設(shè)備幾臺為宜?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.${∫}_{1}^{e}$($\frac{1}{x}$+x)dx=$\frac{1}{2}$e2+$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.見如圖程序框圖,若輸入a=110011,則輸出結(jié)果是( 。
A.51B.49C.47D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)是定義在R上的奇函數(shù).當(dāng)x≥0時(shí),f(x)=2x+t(t為常數(shù)).則f(m)<3成立的一個(gè)充分不必要條件是( 。
A.m<3B.m<2C.-2<m<2D.m>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)變量,y滿足約束條件$\left\{\begin{array}{l}x+1≥0\\ x+2y-2≥0\\ 2x-y-2≤0\end{array}\right.$,則目標(biāo)函數(shù)z=3x+4y的最小值為(  )
A.1B.3C.$\frac{26}{5}$D.-19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某種產(chǎn)品的質(zhì)量以其指標(biāo)值來衡量,其指標(biāo)值越大表明質(zhì)量越好,且指標(biāo)值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品,現(xiàn)用兩種新配方(分別稱為A配方和B配方)做試驗(yàn),各生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的指標(biāo)值,得到了下面的試驗(yàn)結(jié)果:
A配方的頻數(shù)分布表
 指標(biāo)值分組[90,94)[94,98)[98,102)[102,106)[106,110]
 頻數(shù) 2042  22
B配方的頻數(shù)分布表
 指標(biāo)值分組[90,94)[94,98)[98,102)[102,106)[106,110]
 頻數(shù) 1242  3210 
(1)分別估計(jì)用A配方,B配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;
(2)已知用B配方生產(chǎn)的一件產(chǎn)品的利潤y(單位:元)與其指標(biāo)值t的關(guān)系式為y=$\left\{\begin{array}{l}{-2,y<94}\\{2,94≤t<102}\\{4,t≥102}\end{array}\right.$,估計(jì)用B配方生產(chǎn)的一件產(chǎn)品的利潤大于0的概率,并求用B配方生產(chǎn)的上述產(chǎn)品平均每件的利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某單位員工按年齡分為A,B,C三組,其人數(shù)之比為5:4:1,現(xiàn)用分層抽樣的方法從總體中抽取一個(gè)容量為20的樣本,若C組中甲、乙二人均被抽到的概率是$\frac{1}{45}$,則該單位員工總數(shù)為( 。
A.110B.100C.90D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.從5名志愿者中選派4人在星期六和星期日參加公益活動,每人一天,每天兩人,則不同的選派方法共有(  )
A.60種B.48種C.30種D.10種

查看答案和解析>>

同步練習(xí)冊答案