【題目】深受廣大球迷喜愛的某支歐洲足球隊.在對球員的使用上總是進行數(shù)據(jù)分析,為了考察甲球員對球隊的貢獻,現(xiàn)作如下數(shù)據(jù)統(tǒng)計:
球隊勝 | 球隊負(fù) | 總計 | |
甲參加 | |||
甲未參加 | |||
總計 |
(1)求的值,據(jù)此能否有的把握認(rèn)為球隊勝利與甲球員參賽有關(guān);
(2)根據(jù)以往的數(shù)據(jù)統(tǒng)計,乙球員能夠勝任前鋒、中鋒、后衛(wèi)以及守門員四個位置,且出場率分別為:,當(dāng)出任前鋒、中鋒、后衛(wèi)以及守門員時,球隊輸球的概率依次為:.則:
1)當(dāng)他參加比賽時,求球隊某場比賽輸球的概率;
2)當(dāng)他參加比賽時,在球隊輸了某場比賽的條件下,求乙球員擔(dān)當(dāng)前鋒的概率;
3)如果你是教練員,應(yīng)用概率統(tǒng)計有關(guān)知識.該如何使用乙球員?
附表及公式:
.
【答案】(1)有的把握(2)1)0.32, 2)0.32, 3)多讓乙球員擔(dān)當(dāng)守門員,
【解析】分析:(1)直接根據(jù)2×2列聯(lián)表求的值,利用公式求出的值,再判斷有 的把握認(rèn)為球隊勝利與甲球員參賽有關(guān).(2)1)利用互斥事件的概率公式求球隊某場比賽輸球的概率;2)利用條件概率求乙球員擔(dān)當(dāng)前鋒的概率;3)因為,所以應(yīng)該多讓乙球員擔(dān)當(dāng)守門員,來擴大贏球場次.
詳解:(1),
有的把握認(rèn)為球隊勝利與甲球員參賽有關(guān).
(2)1)設(shè)表示“乙球員擔(dān)當(dāng)前鋒”;表示“乙球員擔(dān)當(dāng)中鋒 ”;表示“乙球員擔(dān)當(dāng)后衛(wèi)”;表示“乙球員擔(dān)當(dāng)守門員”;表示“球隊輸?shù)裟硤霰荣悺,則 .
2).
3)因為,所以應(yīng)該多讓乙球員擔(dān)當(dāng)守門員,來擴大贏球場次.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列的前項和為,且和滿足: .
(1)求的通項公式;
(2)設(shè),求的前項和;
(3)在(2)的條件下,對任意,都成立,求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時,輪船位于港口的O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時的航行速度沿正東方向勻速行駛.假設(shè)該小艇沿直線方向以v海里/小時的航行速度勻速行駛,經(jīng)過t小時與輪船相遇.
(I)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(II)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點是圓心為半徑為的半圓弧上從點數(shù)起的第一個三等分點,點是圓心為半徑為的半圓弧的中點,、分別是兩個半圓的直徑,,直線與兩個半圓所在的平面均垂直,直線、共面.
(1)求三棱錐的體積;
(2)求直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點分別為,且,
⊙與該橢圓有且只有一個公共點.
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)過點的直線與⊙相切,且與橢圓相交于兩點,求證:;
(3)過點的直線與⊙相切,且與橢圓相交于兩點,試探究的數(shù)量關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖所示的某種容器的體積為,它是由圓錐和圓柱兩部分連接而成,圓柱與圓錐的底面半徑都為.圓錐的高為,母線與底面所成的角為;圓柱的高為,已知圓柱底面的造價為元,圓柱側(cè)面造價為元,圓錐側(cè)面造價為元.
(1)將圓柱的高表示為底面半徑的函數(shù),并求出定義域;
(2)當(dāng)容器造價最低時,圓柱的底面半徑為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com