分析 先由同角三角函數(shù)關(guān)系式求出cosα,再由三角函數(shù)加法定理能求出結(jié)果.
解答 解:∵sinα=$\frac{3}{5}$,∴cosα=$±\sqrt{1-(\frac{3}{5})^{2}}$=$±\frac{4}{5}$,
當(dāng)cosα=-$\frac{4}{5}$時,cos($α+\frac{π}{3}$)=cosαcos$\frac{π}{3}$-sin$αsin\frac{π}{3}$=-$\frac{4}{5}$×$\frac{1}{2}$-$\frac{3}{5}$×$\frac{\sqrt{3}}{2}$=-$\frac{4+3\sqrt{3}}{10}$.
當(dāng)cosα=$\frac{4}{5}$時,cos($α+\frac{π}{3}$)=cosαcos$\frac{π}{3}$-sin$αsin\frac{π}{3}$=$\frac{4}{5}$×$\frac{1}{2}$-$\frac{3}{5}$×$\frac{\sqrt{3}}{2}$=$\frac{4-3\sqrt{3}}{10}$.
點評 本題考查三角函數(shù)值的求法,是中檔題,解題時要認真審題,注意同角三角函數(shù)關(guān)系式和三角函數(shù)加法定理的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,+∞) | B. | (0,+∞) | C. | [1,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
X | -1 | 0 | 1 |
P | a | b | c |
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com