8.如圖,等腰梯形ABDC內(nèi)接于圓,過(guò)B作腰AC的平行線(xiàn)BE交圓于F,過(guò)A點(diǎn)的切線(xiàn)交DC的延長(zhǎng)線(xiàn)于P,PC=ED=1,PA=2.
(Ⅰ)求AC的長(zhǎng);
(Ⅱ)求證:BE=EF.

分析 (I)由PA是圓的切線(xiàn)結(jié)合切割線(xiàn)定理得比例關(guān)系,求得PD,再由角相等得三角形相似:△PAC∽△CBA,從而求得AC的長(zhǎng);
(II)欲求證:“BE=EF”,可先分別求出它們的值,比較即可,求解時(shí)可結(jié)合圓中相交弦的乘積關(guān)系.

解答 解:(I)∵PA2=PC•PD,PA=2,PC=1,
∴PD=4,…(2分)
又∵PC=ED=1,
∴CE=2,
∵∠PAC=∠CBA,∠PCA=∠CAB,
∴△PAC∽△CBA,
∴$\frac{PC}{AC}=\frac{AC}{AB}$,…(4分)
∴AC2=PC•AB=2,
∴$AC=\sqrt{2}$…(5分)
證明:(II)∵$BE=AC=\sqrt{2}$,CE=2,而CE•ED=BE•EF,…(8分)
∴$EF=\frac{2•1}{{\sqrt{2}}}=\sqrt{2}$,
∴EF=BE.    …(10分)

點(diǎn)評(píng) 本題主要考查與圓有關(guān)的比例線(xiàn)段、圓中的切割線(xiàn)定理以及相似三角形的知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.關(guān)于平面向量,有下列四個(gè)命題:
①若$\vec a•\vec b=\vec b•\vec c,則\vec a=\vec c$.
②$\vec a$=(1,1),$\vec b$=(2,x),若$\vec a+\vec b$與$4\vec b-2\vec a$平行,則x=2.
③非零向量$\vec a$和$\vec b$滿(mǎn)足|$\vec a}$|=|${\vec b}$|=|${\vec a-\vec b}$|,則$\vec a$與$\vec a+\vec b$的夾角為60°.
④點(diǎn)A(1,3),B(4,-1),與向量$\overrightarrow{AB}$同方向的單位向量為($\frac{3}{5},-\frac{4}{5}$).
其中真命題的序號(hào)為②④.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}是等差數(shù)列,且a3=5,a6=11,數(shù)列{bn}是公比大于1的等比數(shù)列,且b1=1,b3=9.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=an-bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知a,b∈R,i是虛數(shù)單位,若3+bi與a-i互為共軛復(fù)數(shù),則|a+bi|等于(  )
A.$\sqrt{2}$B.5C.$\sqrt{10}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知四棱錐P-ABCD的三視圖如圖所示,E是側(cè)棱PC上的動(dòng)點(diǎn).
(1)求證:BD⊥AE
(2)若點(diǎn)E為PC的中點(diǎn),求二面角D-AE-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,平面ABCD⊥平面ABE,四邊形ABCD是邊長(zhǎng)為2的正方形,且點(diǎn)B在平面ACE上的射影F恰好落在邊CE上.
(1)求證:AE⊥平面BCE;
(2)當(dāng)二面角B-AC-E的余弦值為$\frac{\sqrt{3}}{3}$時(shí),求∠BAE的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為l,粗線(xiàn)畫(huà)出的是某多面體的三視圖,則該幾何體的各個(gè)面中最大面的面積為(  )
A.lB.2C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.一錐體的三視圖如圖所示,則該棱錐的最長(zhǎng)棱的棱長(zhǎng)為( 。
A.$\sqrt{33}$B.$\sqrt{17}$C.$\sqrt{41}$D.$\sqrt{42}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)函數(shù)f(x)=a(x+1),若f(x)≤ex恒成立,則實(shí)數(shù)a取值范圍是0≤a≤1.

查看答案和解析>>

同步練習(xí)冊(cè)答案