18.設(shè)函數(shù)f(x)=a(x+1),若f(x)≤ex恒成立,則實(shí)數(shù)a取值范圍是0≤a≤1.

分析 g(x)=a(x+1)-ex 轉(zhuǎn)化成求g(x)的最大值問(wèn)題.

解答 解:設(shè)g(x)=a(x+1)-ex
g′(x)=a-ex
若a<0,g′(x)<0,則y=g(x)單調(diào)遞減,無(wú)最大值;
a=0,g(x)=-ex≤0成立;
若a>0,g(x)在(0,lna)遞增,(lna,+∞)遞減,
g(x)最大值為g(a)=a(lna+1)-a≤0,
解得0<a≤1
故答案為:0≤a≤1

點(diǎn)評(píng) 本題是恒成立問(wèn)題,除了構(gòu)造函數(shù),求最大值外,還可以分離參數(shù),不過(guò)要對(duì)a加以討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,等腰梯形ABDC內(nèi)接于圓,過(guò)B作腰AC的平行線BE交圓于F,過(guò)A點(diǎn)的切線交DC的延長(zhǎng)線于P,PC=ED=1,PA=2.
(Ⅰ)求AC的長(zhǎng);
(Ⅱ)求證:BE=EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,底面ABCD為菱形,點(diǎn)F在AA1上,∠DAB=120°,AA1=AB=3AF=3,$\overrightarrow{{A}_{1}E}$=λ$\overrightarrow{{A}_{1}D}$(0<λ<1).
(1)若CE∥平面BDF,求λ的值;
(2)求平面CDE與平面BDF所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.某三棱錐的三視圖如圖所示,則該三棱錐體積是1,四個(gè)面的面積中最大的是$\frac{3\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,直三棱柱ABC-A′B′C′,E,F(xiàn),G分別是A′C′,BC與B′C′的中點(diǎn),且AA′=$\sqrt{3}$,BC=2,AC=4.平面ABGE⊥平面BCC′B′.
(Ⅰ)求證:AB⊥BC;
(Ⅱ)求平面ABE與平面EFC′所成角的平面角的余弦值的絕對(duì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)a∈R,函數(shù)f(x)=ax2-lnx,g(x)=ex-ax.
(1)若函數(shù)h(x)=f(x)+2x,討論h(x)的單調(diào)性.
(2)若f(x)•g(x)>0對(duì)x∈(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.判斷下列對(duì)應(yīng)是否是映射,是否是函數(shù).
(1)A=N,B=N*,f:x→y=|x-1|,x∈A,y∈B;
(2)A=R,B={1,2},f:x→y=$\left\{\begin{array}{l}{1(x≥0)}\\{2(x<0)}\end{array}\right.$;
(3)A={平面M內(nèi)的三角形},B{平面M內(nèi)的圓},對(duì)應(yīng)法則是“作三角形的外接圓”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在平面直角坐標(biāo)系xOy中,若直線l:y-1=k(x-$\sqrt{3}$)不經(jīng)過(guò)第四象限,則實(shí)數(shù)k的取值范圍是[0,$\frac{\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.根據(jù)圖說(shuō)出函數(shù)的單調(diào)區(qū)間,以及在每一單調(diào)區(qū)間上,函數(shù)是增函數(shù)還是減函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案