18.在△ABC中,A、B、C是三角形的三內(nèi)角,a、b、c是三內(nèi)角對(duì)應(yīng)的三邊,已知acosB=bcosA,△ABC的形狀( 。
A.等邊三角形B.等腰三角形C.直角三角形D.等腰直角三角形

分析 由題中條件并利用正弦定理可得 sinAcosB=sinBcosA,即sin(A-B)=0;再根據(jù)A-B的范圍,可得A=B,從而得出結(jié)論.

解答 解:∵acosB=bcosA,
∴由正弦定理可得 sinAcosB=sinBcosA,sin(A-B)=0.
又∵-π<A-B<π,
∴A-B=0.
故△ABC的形狀是等腰三角形,
故選:B.

點(diǎn)評(píng) 本題主要考查正弦定理的應(yīng)用,已知三角函數(shù)值求角的大小,得到sin(A-B)=0,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個(gè)頂點(diǎn)分別為A(0,b)和C(0,-b),兩個(gè)焦點(diǎn)分別為F1(-c,0)和F2(c,0)(c>0),過(guò)點(diǎn)E(3c,0)的直線AE與橢圓相交于另一點(diǎn)B,且F1A∥F2B.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)直線F2B上有一點(diǎn)H(m,n)(m≠0)在△AF1C的外接圓上,求$\frac{n}{m}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}滿足a1=1,an+1+an=$\sqrt{n+1}$-$\sqrt{n-1}$,n∈N*
(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求證:數(shù)列{Sn}不是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,圓C的方程是x2+y2=4.
(Ⅰ)過(guò)點(diǎn)(5,3)作直線l與圓C相交于E,F(xiàn)兩點(diǎn),若OE⊥OF,求直線l的斜率;
(Ⅱ)如圖,設(shè)M(x1,y1),P(x2,y2)是圓C上兩個(gè)動(dòng)點(diǎn),點(diǎn)M關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為M1,關(guān)于x軸的對(duì)稱點(diǎn)為M2,若直線PM1,PM2與y軸的交點(diǎn)坐標(biāo)分別為(0,m)和(0,n),試問(wèn):mn是否是定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a+b=2,∠C=120°,則邊c的最小值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{1}{2}$,過(guò)焦點(diǎn)垂直長(zhǎng)軸的弦長(zhǎng)為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓的右頂點(diǎn)作直線交拋物線y2=2x于A、B兩點(diǎn),求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.曲線y=$\frac{2}{x}$與直線y=x-1及x=1所圍成的封閉圖形的面積為( 。
A.2-ln2B.2ln2-$\frac{1}{2}$C.2+ln2D.2ln2+$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)i為虛數(shù)單位,則(2i-x)6的展開(kāi)式中含x4項(xiàng)的系數(shù)為-60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.將函數(shù)f(x)=2sin(2x+$\frac{π}{4}$)的圖象向右平移φ(φ>0)個(gè)單位,再將圖象上每一點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$(縱坐標(biāo)不變),所得圖象關(guān)于直線x=$\frac{π}{4}$對(duì)稱,則φ的最小值為( 。
A.$\frac{1}{8}$πB.$\frac{1}{4}$πC.$\frac{3}{8}$πD.$\frac{1}{2}$π

查看答案和解析>>

同步練習(xí)冊(cè)答案