1.第一組樣本點(diǎn)為(-5,-8.9),(-4,-7.2),(-3,-4.8),(-2,-3.3),(-1,-0.9)
第二組樣本點(diǎn)為(1,8.9),(2,7.2),(3,4.8),(4,3.3),(5,0.9)
第一組變量的線性相關(guān)系數(shù)為r1,第一組變量的線性相關(guān)系數(shù)為r2,則( 。
A.r1>0>r2B.r2>0>r1C.r1<r2<0D.r2>r1>0

分析 根據(jù)題意,由所給的樣本點(diǎn)坐標(biāo)分析可得r1>0以及r2<0,比較即可得答案.

解答 解:根據(jù)題意,第一組樣本點(diǎn)為(-5,-8.9),(-4,-7.2),(-3,-4.8),(-2,-3.3),(-1,-0.9)
可得:兩個(gè)變量之間的正相關(guān),因此r1>0;
第二組樣本點(diǎn)為(1,8.9),(2,7.2),(3,4.8),(4,3.3),(5,0.9)
可得:兩個(gè)變量之間的負(fù)相關(guān),因此r2<0;
則有r1>0>r2
故選:A.

點(diǎn)評(píng) 本題考查變量之間的線性相關(guān)系數(shù),注意r與變量間相關(guān)性的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知圓M:(x-2a)2+y2=4a2與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)交于A、B兩點(diǎn),點(diǎn)D為圓M與x軸正半軸的交點(diǎn),點(diǎn)E為雙曲線C的左頂點(diǎn),若四邊形EADB為菱形,則雙曲線C的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.等比數(shù)列{an}中,已知a1=2,a4=16.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}是等差數(shù)列,a3=b3,a5=b5試求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某同學(xué)逛書店,發(fā)現(xiàn)四本喜歡的書,決定至少買其中的一本,則購買方案有( 。
A.4種B.6種C.8種D.15種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.《九章算術(shù)》有如下問題:有上禾三秉(古代容量單位),中禾二秉,下禾一秉,實(shí)三十九斗;上禾二秉,中禾三秉,下禾一秉,實(shí)三十四斗;上禾一秉,中禾二秉,下禾三秉,實(shí)二十六斗.問上、中、下禾一秉各幾何?依上文:設(shè)上、中、下禾一秉分別為x斗、y斗、z斗,設(shè)計(jì)如圖所示的程序框圖,則輸出的x,y,z的值分別為( 。
A.$\frac{37}{4},\frac{17}{4},\frac{11}{4}$B.$\frac{11}{4},\frac{37}{4},\frac{17}{4}$C.$\frac{35}{4},\frac{17}{4},\frac{9}{4}$D.$\frac{35}{4},\frac{9}{4},\frac{17}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.求曲線y2=4x與直線y=x所圍成的圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積( 。
A.$\frac{8}{3}$B.$\frac{32}{3}$πC.$\frac{8}{3}$πD.24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.近年來鄭州空氣污染教委嚴(yán)重,縣隨機(jī)抽取一年(365天)內(nèi)100天的空氣中PM2.5指數(shù)的監(jiān)測(cè)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表:
PM2.5[0,50](50,100](100,150](150,200](200,250](250,300]>300
空氣質(zhì)量優(yōu)輕微污染輕度污染重度污染中重度污染重度污染
天數(shù)415183071115
記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失為S(單位:元),PM2.5指數(shù)為x,當(dāng)x在區(qū)間[0,100]內(nèi)時(shí),對(duì)該企業(yè)沒有造成經(jīng)濟(jì)損失;當(dāng)x在區(qū)間(100,300]內(nèi)時(shí),對(duì)該企業(yè)造成的經(jīng)濟(jì)損失成直線模型(當(dāng)PM2.5指數(shù)為150時(shí)造成的經(jīng)濟(jì)損失為500元,當(dāng)PM2.5指數(shù)為200時(shí),造成的經(jīng)濟(jì)損失為700元);當(dāng)PM2.5指數(shù)大于300時(shí),造成的經(jīng)濟(jì)損失為2000元
(1)試寫出S(x)的表達(dá)式
(2)試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天的經(jīng)濟(jì)損失大于500元且不超過900元的概率
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表,并判斷是否有95%的把握認(rèn)為鄭州市本年度空氣重度污染與供暖有關(guān)    附:
P(k2≥k00.250.150.100.050.0250.0100.0050.001
k01.322.072.703.8415.026.637.8710.828
k2=$\frac{n(ac-bd)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
非重度污染重度污染合計(jì)
供暖季
非供暖季
合計(jì)100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=alnx+$\frac{x}$在x=1處有極值-1.
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<0).
(1)若f(x)的部分圖象如圖所示,求f(x)的解析式;
(2)在(1)的條件下,求最小正實(shí)數(shù)m,使得函數(shù)f(x)的圖象向左平移m個(gè)單位后所對(duì)應(yīng)的函數(shù)是偶函數(shù);
(3)若f(x)在[0,$\frac{π}{3}$]上是單調(diào)遞增函數(shù),求ω的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案