【題目】選修4-4:極坐標(biāo)與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線
(1)求圓O和直線l的直角坐標(biāo)方程;
(2)當(dāng)時(shí),求直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
【答案】(1) 圓O的直角坐標(biāo)方程為x2+y2-x-y=0,直線l的直角坐標(biāo)方程為x-y+1=0
(2)
【解析】
試題分析:
(1)利用ρsinθ=y;ρcosθ=x;x2+y2=ρ2,利用兩角差公式求解即可.
(2)聯(lián)立直線l與圓的方程,求出交點(diǎn),轉(zhuǎn)化為極坐標(biāo)即可.
試題解析:(1)圓O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ圓O的直角坐標(biāo)方程為:x2+y2=x+y,即x2+y2-x-y=0,直線,即ρsinθ-ρcosθ=1
則直線l的直角坐標(biāo)方程為:y-x=1,即x-y+1=0
(2)由 得
故直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,點(diǎn)在傾斜角為的直線上,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的方程為.
(1)寫出的參數(shù)方程及的直角坐標(biāo)方程;
(2)設(shè)與相交于兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過點(diǎn),且法向量為的直線(點(diǎn)法式)方程為:,化簡(jiǎn)得.類比以上方法,在空間直角坐標(biāo)系中,經(jīng)過點(diǎn),且法向量為的平面的方程為(。
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)a=2時(shí),求函數(shù)g(x)的零點(diǎn);
(2)若函數(shù)g(x)有四個(gè)零點(diǎn),求a的取值范圍;
(3)在(2)的條件下,記g(x)的四個(gè)零點(diǎn)分別為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)數(shù)列{an}的前n項(xiàng)和為Sn=10n﹣n2,求數(shù)列{|an|}的前n項(xiàng)和.
(2)已知等差數(shù)列{an}滿足a2=0,a6+a8=﹣10.求數(shù)列{}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)畫出該函數(shù)的圖象,并寫出該函數(shù)的單調(diào)區(qū)間(不用證明);
(3)若函數(shù)恰有3個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為創(chuàng)建國(guó)家級(jí)文明城市,某城市號(hào)召出租車司機(jī)在高考期間至少參加一次“愛心送考”,該城市某出租車公司共200名司機(jī),他們參加“愛心送考”的次數(shù)統(tǒng)計(jì)如圖所示.
(1)求該出租車公司的司機(jī)參加“愛心送考”的人均次數(shù);
(2)從這200名司機(jī)中任選兩人,設(shè)這兩人參加送考次數(shù)之差的絕對(duì)值為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從二月一日起的300天內(nèi),西紅柿市場(chǎng)銷售價(jià)與上市時(shí)間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系用圖(2)的拋物線段表示.
(1)寫出圖(1)表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系式寫出圖(2)表示的種植成本與時(shí)間的函數(shù)關(guān)系式
(2)認(rèn)定市場(chǎng)售價(jià)減去種植成本為純收益,問何時(shí)上市的西紅柿收益最大?(注:市場(chǎng)售價(jià)和種植成本的單位:元/kg,時(shí)間單位:天.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左,右焦點(diǎn)分別為,若雙曲線上存在點(diǎn),使,則該雙曲線的離心率范圍為( )
A. (1,1) B. (1,1) C. (1,1] D. (1,1]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com