【題目】已知函數(shù).

1)當時,解不等式

2)畫出該函數(shù)的圖象,并寫出該函數(shù)的單調區(qū)間(不用證明);

3)若函數(shù)恰有3個不同零點,求實數(shù)的取值范圍.

【答案】1;(2)圖象見解析,單調遞減區(qū)間是,單調遞增區(qū)間;(3

【解析】

1)由時,,從而可得,解不等式組即可;

2)結合指數(shù)函數(shù)的性質,及二次函數(shù)的性質,可得到的單調區(qū)間,并作出函數(shù)的圖象;

3)由恰有3個不同零點,可知的圖象有3個不同交點,結合的圖象,可求得的取值范圍.

1)由題意,當時,,則,解得.

2)當時,,

因為函數(shù)上單調遞減,所以上單調遞增.

時,,此時是對稱軸為的二次函數(shù)的一部分,所以上單調遞減,在上單調遞增.

時,,當時,.

作出函數(shù)的圖象,如下圖所示:

所以函數(shù)的單調遞減區(qū)間是,單調遞增區(qū)間是.

3)函數(shù)恰有3個不同零點,即方程3個不同解,

所以函數(shù)與直線的圖象有3個不同交點,

的圖象知,當與直線的圖象有3個不同交點,

所以實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線x2=4y

(1)求拋物線在點P(2,1)處的切線方程;

(2)若不過原點的直線l與拋物線交于A,B兩點(如圖所示),且OAOB,|OA|=|OB|,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省為了確定合理的階梯電價分檔方案,對全省居民用量進行了一次抽樣調查,得到居民月用電量(單位:度)的頻率分布直方圖(如圖所示),求:

1)若要求80%的居民能按基本檔的電量收費,則基本檔的月用電量應定為多少度?

2)由頻率分布直方圖可估計,居民月用電量的眾數(shù)、中位數(shù)和平均數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4月16日摩拜單車進駐大連市旅順口區(qū),綠色出行引領時尚,旅順口區(qū)對市民進行“經常使用共享單車與年齡關系”的調查統(tǒng)計,若將單車用戶按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,抽取一個容量為200的樣本,將一周內使用的次數(shù)為6次或6次以上的稱為“經常使用單車用戶”。使用次數(shù)為5次或不足5次的稱為“不常使用單車用戶”,已知“經常使用單車用戶”有120人,其中是“年輕人”,已知“不常使用單車用戶”中有是“年輕人”.

(1)請你根據(jù)已知的數(shù)據(jù),填寫下列列聯(lián)表:

年輕人

非年輕人

合計

經常使用單車用戶

不常使用單車用戶

合計

(2)請根據(jù)(1)中的列聯(lián)表,計算值并判斷能否有的把握認為經常使用共享單車與年齡有關?

(附:

時,有的把握說事件有關;當時,有的把握說事件有關;當時,認為事件是無關的)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:極坐標與參數(shù)方程

在極坐標系下,已知圓O和直線

1求圓O和直線l的直角坐標方程;

2時,求直線l與圓O公共點的一個極坐標

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】要測量底部不能到達的電視塔AB的高度,C點測得塔頂A的仰角是45°,D點測得塔頂A的仰角是30°,并測得水平面上的∠BCD=120°,CD="40" m,則電視塔的高度為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的值域;

2)設, , ,求函數(shù)的最小值;

3)對(2)中的,若不等式對于任意的時恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)若點的極坐標為,的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上的奇函數(shù).

1)求實數(shù)的值;

2)若,則不等式上有解,求實數(shù)的取值范圍;

3)若上的最小值為,求的值.

查看答案和解析>>

同步練習冊答案