4.若圓(x-a)2+(y-a)2=8上總存在兩個點到原點的距離為$\sqrt{2}$,則實數(shù)a的取值范圍是(  )
A.[-1,1]B.(-3,3)C.(-3,-1]∪[1,3)D.(-3,-1)∪(1,3)

分析 由已知得圓上點到原點距離d=$\sqrt{2}$,從而|d-r|<$\sqrt{2}$|a|且d+r>$\sqrt{2}$|a|,由此能求出實數(shù)a的取值范圍.

解答 解:圓心(a,a)到原點的距離為$\sqrt{2}$|a|,半徑r=2$\sqrt{2}$,
圓上點到原點距離為d,
∵圓(x-a)2+(y-a)2=8上總存在兩個點到原點的距離為$\sqrt{2}$,
∴d=$\sqrt{2}$,
∴|d-r|<$\sqrt{2}$|a|且d+r>$\sqrt{2}$|a|
∴|$\frac{d-r}{\sqrt{2}}$|<|a|<$\frac{d+r}{\sqrt{2}}$,即1<|a|<3,
解得 1<a<3或-3<a<-1.
∴實數(shù)a的取值范圍是(-3,-1)∪(1,3).
故選:D.

點評 本題考查了實數(shù)的取值范圍與應用問題,解題時要認真審題,注意點到直線的距離公式的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=|x-1|+|x-2|.
(1)求函數(shù)y=f(x)的最小值;
(2)若不等式|a+b|+|a-b|≥|a|f(x),(a≠0,a、b∈R)恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在平面直角坐標系xOy中,設(shè)點P(x,3)在矩陣M=$[{\begin{array}{l}1&2\\ 3&4\end{array}}]$對應的變換下得到點Q(y-4,y+2),求M2$[{\begin{array}{l}x\\ y\end{array}}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知在直角坐標系xOy中,曲線C的參數(shù)方程為:$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$ (θ為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,直線l的極坐標方程為:2ρcos(θ+$\frac{π}{3}$)+3$\sqrt{6}$=0.
(1)寫出曲線C和直線l在直角坐標系下的方程;
(2)設(shè)點P是曲線C上的一個動點,求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.以直角坐標系xOy的原點為極點,x軸的非負半軸為極軸建立極坐標系,且兩坐標系相同的長度單位.已知點N的極坐標為($\sqrt{2}$,$\frac{π}{4}$),M是曲線C1:ρ=1上任意一點,點G滿足$\overrightarrow{OG}$=$\overrightarrow{OM}$+$\overrightarrow{ON}$,設(shè)點G的軌跡為曲線C2
(1)求曲線C2的直角坐標方程;
(2)若過點P(2,0)的直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}$(t為參數(shù)),且直線l與曲線C2交于A,B兩點,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=2sin($\frac{1}{3}$x-$\frac{π}{6}$),x∈R.
(1)求f(0)的值;
(2)設(shè)α∈[0,$\frac{π}{2}$],β∈[π,$\frac{3π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$,f(3β+2π)=-$\frac{6}{5}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.求函數(shù)y=|x-4|+|x-6|的最小值,并求函數(shù)值為最小值時x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知點A(-2,4)、B(4,2),直線l過點P(0,-2)與線段AB相交,則直線l的斜率k的取值范圍是( 。
A.[1,+∞)B.(-∞,-3]C.[-3,1]D.(-∞,-3]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若函數(shù)f(x)=-x2-2(m-1)x+5在區(qū)間(-∞,-5]上單調(diào)遞增,則實數(shù)m的取值范圍是m≤6.

查看答案和解析>>

同步練習冊答案