10.2015年12月,京津冀等地?cái)?shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來(lái)最嚴(yán)重的污染過(guò)程.為了探究車(chē)流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份星期一到星期日某一時(shí)間段車(chē)流量與PM2.5的數(shù)據(jù)如表:
時(shí)間星期一星期二星期三星期四星期五星期六星期日
車(chē)流量x(萬(wàn)輛)1234567
PM2.5的濃度y(微克/立方米)27313541495662
(1)在表中,畫(huà)出車(chē)流量和PM2.5濃度的散點(diǎn)圖;
(2)求y關(guān)于x的線性回歸方程;
(3)(i)利用所求的回歸方程,預(yù)測(cè)該市車(chē)流量為8萬(wàn)輛時(shí),PM2.5的濃度;
(ii)規(guī)定當(dāng)一天內(nèi)PM2.5的濃度平均值在(0,50]內(nèi),空氣質(zhì)量等級(jí)為優(yōu);當(dāng)一天內(nèi)PM2.5的濃度平均值在(50,100]內(nèi),空氣質(zhì)量等級(jí)為良,為使該市某日空氣質(zhì)量為優(yōu)活為良,則應(yīng)控制當(dāng)天車(chē)流量在多少萬(wàn)輛以內(nèi)(結(jié)果以萬(wàn)輛為單位,保留整數(shù))?
參考公式:回歸直線的方程是:$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{x}$=$\overline{y}$=$\stackrel{∧}$$\overline{x}$.

分析 (1)利用描點(diǎn)法可得數(shù)據(jù)的散點(diǎn)圖;
(2)根據(jù)公式求出b,a,可寫(xiě)出線性回歸方程;
(3)(i)根據(jù)(2)的性回歸方程,代入x=8求出PM2.5的濃度,(ii)由$\frac{169}{28}$x+$\frac{132}{7}$≤100,解得x的取值范圍.

解答 解:畫(huà)出車(chē)流量和PM2.5濃度的散點(diǎn)圖;

(2)由數(shù)據(jù)可得:$\overline{x}$=$\frac{1}{7}$(1+2+3+4+5+6+7)=4,
$\overline{y}$=$\frac{1}{7}$(27+31+35+41+49+56+62)=43,
$\sum_{i=1}^{7}$xiyi=1373,$\sum_{i=1}^{7}$${x}_{i}^{2}$=140,
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{1373-1204}{140-112}$=$\frac{169}{28}$,
$\stackrel{^}{a}$=$\overline{y}$-b$\overline{x}$=$\frac{132}{7}$,
故y關(guān)于x的線性回歸方程為$\stackrel{^}{y}$=$\frac{169}{28}$x+$\frac{132}{7}$,
(3)(i)當(dāng)車(chē)流量為8萬(wàn)輛時(shí),即x=8時(shí),$\stackrel{^}{y}$=$\frac{169}{28}$×8+$\frac{132}{7}$=$\frac{470}{7}$,
故車(chē)流量為8萬(wàn)輛時(shí),PM2.5的濃度$\frac{470}{7}$,
(ii)根據(jù)題意信息$\frac{169}{28}$x+$\frac{132}{7}$≤100,
即當(dāng)x≤13.44時(shí),
所要使該市某日空氣質(zhì)量為優(yōu)活為良,則應(yīng)控制當(dāng)天車(chē)流量在13萬(wàn)輛以內(nèi).

點(diǎn)評(píng) 本題主要考查了線性回歸分析的方法,包括散點(diǎn)圖,用最小二乘法求參數(shù),以及用回歸方程進(jìn)行預(yù)測(cè)等知識(shí),考查了考生數(shù)據(jù)處理和運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在側(cè)棱和底面垂直的三棱柱ABC-A1B1C1中,AB=1,AC=$\sqrt{3}$,BC=2,AA1=$\sqrt{6}$,點(diǎn)P為CC1的中點(diǎn).
(1)求證:A1C⊥平面ABP;
(2)求平面ABP與平面A1B1P所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知Sn是數(shù)列{$\frac{n}{{2}^{n-1}}$}的前n項(xiàng)和,若不等式|λ+1|<Sn+$\frac{n}{{2}^{n-1}}$對(duì)一切n∈N*恒成立,則λ的取值范圍是-3<λ<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在一個(gè)棱長(zhǎng)為4的正方體內(nèi),最多能放入66個(gè)直徑為1的球.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在一組樣本數(shù)據(jù)(x1,y1),(x2,y2),…(x6,y6)的散點(diǎn)圖中,若所有樣本點(diǎn)(xi,yi)(i=1,2,…,6)都在曲線y=bx2-1附近波動(dòng).經(jīng)計(jì)算$\sum_{i=1}^{6}$xi=11,$\sum_{i=1}^{6}$yi=13,$\sum_{i=1}^{6}$xi2=21,則實(shí)數(shù)b的值為$\frac{19}{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知f(x)=$\sqrt{x}$,則$\lim_{△x→0}\frac{f(x+△x)-f(x)}{△x}$=( 。
A.$\frac{1}{{2\sqrt{x}}}$B.-$\frac{1}{{2\sqrt{x}}}$C.-$\frac{{\sqrt{x}}}{2}$D.$\frac{{\sqrt{x}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若tanα=-3,則$\frac{cosα+2sinα}{cosα-3sinα}$的值為$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)f($\frac{α}{2}$)=$\frac{3}{5}$,α∈($\frac{π}{6}$,$\frac{2π}{3}$),求sin(2α+$\frac{2π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知f(n)=22n+2-3n-4,存在正整數(shù)m,使n∈N*時(shí),能使m整除f(n),則m的最大值為9.

查看答案和解析>>

同步練習(xí)冊(cè)答案