【題目】已知函數(shù),.
(Ⅰ)若,求的極值;
(Ⅱ)若對(duì)于任意的,,都有,求的取值范圍.
【答案】(Ⅰ)有極小值,沒有極大值;(Ⅱ).
【解析】
試題分析:(Ⅰ)將代入函數(shù)的表達(dá)式,求出的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;(Ⅱ)對(duì)于任意的,有,.所以有恒成立,即,構(gòu)造函數(shù),利用導(dǎo)數(shù)求最大值,只需即可.
試題解析:(Ⅰ)的定義域?yàn)?/span>,時(shí),
,,,
∴,,是增函數(shù),,,是減函數(shù).
∴有極小值,沒有極大值.………………………5分
(Ⅱ),
當(dāng)時(shí),,∴在上是單調(diào)遞增函數(shù),最大,………………7分
對(duì)于任意的,.
恒成立,即對(duì)任意,恒成立,∴,…………9分
令,則.
∴當(dāng)時(shí),,當(dāng)時(shí),,
∴在上是增函數(shù),在上是減函數(shù),
當(dāng)時(shí),最大值為,…………………………11分
∴即.……………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2014年5月,我省南昌市遭受連日大暴雨天氣,某網(wǎng)站就“民眾是否支持加大修建城市地下排水設(shè)施的資金投入”進(jìn)行投票,按照南昌暴雨前后兩個(gè)時(shí)間收集有效投票,暴雨后的投票收集了份,暴雨前的投票也收集了份,所得統(tǒng)計(jì)結(jié)果如下表:
已知工作人與從所有投票中任取一個(gè),取到“不支持投入”的投票的概率為.
(1)求列表中數(shù)據(jù)的值;
(2)能夠有多大的把握認(rèn)為南昌暴雨對(duì)民眾是否贊成加大對(duì)修建城市地下排水設(shè)施的投入有關(guān)系?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).
(I)求m的值;
(II)求函數(shù)g(x)=h(x)+,x∈的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的右焦點(diǎn)為F,右頂點(diǎn)為A,設(shè)離心率為e,且滿足,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)的直線l與橢圓交于M,N兩點(diǎn),求△OMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于命題:存在一個(gè)常數(shù),使得不等式對(duì)任意正數(shù),恒成立.
(1)試給出這個(gè)常數(shù)的值;
(2)在(1)所得結(jié)論的條件下證明命題;
(3)對(duì)于上述命題,某同學(xué)正確地猜想了命題:“存在一個(gè)常數(shù),使得不等式對(duì)任意正數(shù),,恒成立.”觀察命題與命題的規(guī)律,請(qǐng)猜想與正數(shù),,,相關(guān)的命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=a2x+2ax-1(a>0且a≠1),當(dāng)自變量x∈[-1,1]時(shí),函數(shù)的最大值為14.試求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)悉遵義市紅花崗區(qū)、匯川區(qū)2017年現(xiàn)有人口總數(shù)為110萬人,如果年自然增長(zhǎng)率為%,試解答以下問題:
(1)寫出經(jīng)過年后,遵義市人口總數(shù)(單位:萬人)關(guān)于的函數(shù)關(guān)系式;
(2)計(jì)算10年以后遵義市人口總數(shù)(精確到0.1萬人);
(3)計(jì)算經(jīng)過多少年后遵義市人口將達(dá)到150萬人(精確到1年)
(參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)對(duì)任意x∈(0,+∞),恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左焦點(diǎn)為,其左、右頂點(diǎn)為、,橢圓與軸正半軸的交點(diǎn)為,的外接圓的圓心在直線上.
(I)求橢圓的方程;
(II)已知直線:,是橢圓上的動(dòng)點(diǎn),,垂足為,是否存在點(diǎn),使得為等腰三角形?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com