【題目】已知橢圓C 的右焦點為F,右頂點為A,設離心率為e,且滿足,其中O為坐標原點.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點的直線l與橢圓交于MN兩點,求△OMN面積的最大值.

【答案】(Ⅰ);(Ⅱ)

【解析】試題分析:1)根據(jù),解得c值,即可得橢圓的方程;

(Ⅱ)聯(lián)立l與橢圓C的方程,得,

, .所以,又Ol的距離.所以△OMN的面積求最值即可.

試題解析:(Ⅰ)設橢圓的焦半距為c,則|OF| = c,|OA| = a|AF| =

所以,其中,又,聯(lián)立解得

所以橢圓C的方程是

(Ⅱ)由題意直線不能與x軸垂直,否則將無法構成三角形.

當直線lx軸不垂直時,設其斜率為k,那么l的方程為

聯(lián)立l與橢圓C的方程,消去y,得

于是直線與橢圓有兩個交點的充要條件是Δ=,這顯然大于0

設點,

由根與系數(shù)的關系得, .所以,又Ol的距離

所以△OMN的面積 ,那么,當且僅當t = 3時取等.

所以△OMN面積的最大值是

點睛:本題主要考查直線與圓錐曲線位置關系,所使用方法為韋達定理法:因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉化為方程組關系問題,最終轉化為一元二次方程問題,故用韋達定理及判別式是解決圓錐曲線問題的重點方法之一,尤其是弦中點問題,弦長問題,可用韋達定理直接解決,但應注意不要忽視判別式的作用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3000元,2000元.甲、乙產(chǎn)品都需要在A、B兩種設備上加工,在每臺A、B設備上加工一件甲所需工時分別為1,2,加工一件乙設備所需工時分別為2,1.A、B兩種設備每月有效使用臺時數(shù)分別為400和500,分別用表示計劃每月生產(chǎn)甲,乙產(chǎn)品的件數(shù).

(Ⅰ)用列出滿足生產(chǎn)條件的數(shù)學關系式,并畫出相應的平面區(qū)域;

(Ⅱ)問分別生產(chǎn)甲、乙兩種產(chǎn)品各多少件,可使收入最大?并求出最大收入.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的單調(diào)遞減的奇函數(shù),當時, .

(1)求的值;

(2)求的解析式;

(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系xOy中,曲線C:(x-1)2y2=1.直線l經(jīng)過點P(m,0),且傾斜角為,以O為極點,x軸正半軸為極軸,建立極坐標系.

(1)寫出曲線C的極坐標方程與直線l的參數(shù)方程;

(2)若直線l與曲線C相交于AB兩點,且|PA|·|PB|=1,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|2x-1|+|2x-a|+a,x∈R.

(1)當a=3時,求不等式f(x)>7的解集;

(2)對任意x∈R恒有f(x)≥3,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間20名工人年齡數(shù)據(jù)如下表:

年齡(歲)

19

24

26

30

34

35

40

合計

工人數(shù)(人)

1

3

3

5

4

3

1

20

(1)求這20名工人年齡的眾數(shù)與平均數(shù);

(2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;

(3)從年齡在24和26的工人中隨機抽取2人,求這2人均是24歲的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

)若,求的極值;

)若對于任意的,,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求下列各式的值:

(1);

(2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日 期

121

122

123

124

125

溫差°C

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關于x的線性回歸方程;

3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:

查看答案和解析>>

同步練習冊答案