【題目】如圖,數(shù)軸,的交點(diǎn)為,夾角為,與軸、軸正向同向的單位向量分別是,.由平面向量基本定理,對于平面內(nèi)的任一向量,存在唯一的有序?qū)崝?shù)對,使得,我們把叫做點(diǎn)在斜坐標(biāo)系中的坐標(biāo)(以下各點(diǎn)的坐標(biāo)都指在斜坐標(biāo)系中的坐標(biāo)).
(1)若,為單位向量,且與的夾角為,求點(diǎn)的坐標(biāo);
(2)若,點(diǎn)的坐標(biāo)為,求向量與的夾角;
(3)若,求過點(diǎn)的直線的方程,使得原點(diǎn)到直線的距離最大.
【答案】(1)
(2)
(3)
【解析】
(1)設(shè)出P點(diǎn)的坐標(biāo),結(jié)合為單位向量,且與的夾角為,列式求解;
(2)由題意求出,代入數(shù)量積求夾角公式得答案.
(3)由題意得到A在直角坐標(biāo)系和斜坐標(biāo)系下坐標(biāo)的關(guān)系,求出直角坐標(biāo)系下使得原點(diǎn)O到直線l的距離最大的直線方程,轉(zhuǎn)化為斜坐標(biāo)系下的方程,即得解.
(1)若,為單位向量,且與的夾角為,
設(shè),且
代入,得
(2)若,點(diǎn)的坐標(biāo)為,則
又
設(shè)向量與的夾角為,則
(3)若,點(diǎn)
由,可得A在直角坐標(biāo)系下得坐標(biāo)為:
因此過點(diǎn)且使得原點(diǎn)O到直線l的距離最大的直線方程為:
代入:
整理得:
所以過點(diǎn)的直線的方程,使得原點(diǎn)到直線的距離最大的直線方程為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在合作學(xué)習(xí)小組的一次活動(dòng)中,甲、乙、丙、丁、戊五位同學(xué)被隨機(jī)地分配承擔(dān),,,四項(xiàng)不同的任務(wù),每個(gè)同學(xué)只能承擔(dān)一項(xiàng)任務(wù).
(1)若每項(xiàng)任務(wù)至少安排一位同學(xué)承擔(dān),求甲、乙兩人不同時(shí)承擔(dān)同一項(xiàng)任務(wù)的概率;
(2)設(shè)這五位同學(xué)中承擔(dān)任務(wù)的人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,.
(1)若為真命題,為假命題,求實(shí)數(shù)的取值范圍;
(2)若“”是“”的充分不必要條件,求實(shí)數(shù)的取值范圍..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙、丙三個(gè)乒乓球協(xié)會(huì)分別選派3,1,2名運(yùn)動(dòng)員參加某次比賽,甲協(xié)會(huì)運(yùn)動(dòng)員編號分別為,,,乙協(xié)會(huì)編號為,丙協(xié)會(huì)編號分別為,,若從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽.
(1)用所給編號列出所有可能抽取的結(jié)果;
(2)求丙協(xié)會(huì)至少有一名運(yùn)動(dòng)員參加雙打比賽的概率;
(3)求參加雙打比賽的兩名運(yùn)動(dòng)員來自同一協(xié)會(huì)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓上的點(diǎn)到右焦點(diǎn)的距離的最大值為3.
(1)求橢圓的方程;
(2)若過橢圓的右焦點(diǎn)作傾斜角不為零的直線與橢圓交于兩點(diǎn),設(shè)線段的垂直平分線在軸上的截距為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市一次全市高中男生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全市100000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學(xué)校高三年級男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于160 cm和184 cm之間,將測量結(jié)果按如下方式分成6組:第1組[160,164),第2組[164,168),…,第6組[180,184],如圖是按上述分組方法得到的頻率分布直方圖.
(1)由頻率分布直方圖估計(jì)該校高三年級男生平均身高狀況;
(2)求這50名男生身高在172 cm以上(含172 cm)的人數(shù);
(3)在這50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,將該2人中身高排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
參考數(shù)據(jù):若ξ~N(μ,σ2),則P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,且橢圓上一點(diǎn)的坐標(biāo)為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點(diǎn),且以線段為直徑的圓過橢圓的右頂點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),。
(Ⅰ)若曲線在點(diǎn)處的切線與直線平行,求的值;
(Ⅱ)若,問函數(shù)有無極值點(diǎn)?若有,請求出極值點(diǎn)的個(gè)數(shù);若沒有,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com