9.如圖,平面α∥平面β,過點(diǎn)P的兩條斜線分別交平面α、β于A、C及B、D.點(diǎn)P在平面α內(nèi)的射影0點(diǎn)在線段AB上,且PA=8,AB=5,PB=7,CD=20.求:
(1)斜線PC與平面β所成角的大。
(2)平面α與平面β間的距離.

分析 (1)推導(dǎo)出∠PCD就是斜線PC與平面β所成角的大小,且∠PCD=∠PAB,利用余弦定理能求出斜線PC與平面β所成角的大小.
(2)點(diǎn)P在平面β內(nèi)的射影H點(diǎn)在線段CD上,先求出PO=PA•sin60°=4$\sqrt{3}$,再推導(dǎo)出△POA∽△PHC,由此能求出平面α與平面β間的距離.

解答 解:(1)∵平面α∥平面β,過點(diǎn)P的兩條斜線分別交平面α、β于A、C及B、D,
點(diǎn)P在平面α內(nèi)的射影O點(diǎn)在線段AB上,
∴∠PCD就是斜線PC與平面β所成角的大小,且∠PCD=∠PAB,
∵PA=8,AB=5,PB=7,
∴cos∠PCD=cos∠PAB=$\frac{P{A}^{2}+A{B}^{2}-P{B}^{2}}{2PA•AB}$=$\frac{64+25-49}{2×8×5}$=$\frac{1}{2}$,
∴∠PCD=60°,
∴斜線PC與平面β所成角的大小為60°.
(2)點(diǎn)P在平面β內(nèi)的射影H點(diǎn)在線段CD上,
PA=8,AB=5,PB=7,CD=20,∠PCD=∠PAB=60°,
∴PO=PA•sin60°=4$\sqrt{3}$,
∵∠PCD=∠PAB=60°,∠PHC=∠POA=90°,
∴△POA∽△PHC,∴$\frac{PO}{PH}=\frac{AO}{CH}=\frac{AB}{CD}$,
∴PH=$\frac{PO•CD}{AB}$=$\frac{4\sqrt{3}×20}{5}$=16$\sqrt{3}$,
∴平面α與平面β間的距離OH=PH-PO=16$\sqrt{3}-4\sqrt{3}=12\sqrt{3}$.

點(diǎn)評 本題考查線面角的大小的求法,考查兩平面間的距離的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知A(-2,1),B(1,2),點(diǎn)C為直線y=$\frac{1}{3}$x上的動點(diǎn),則|AC|+|BC|的最小值為(  )
A.$2\sqrt{2}$B.$2\sqrt{3}$C.$2\sqrt{5}$D.$2\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.三棱錐A-BCD中,面ABC⊥底面BCD,∠BAC=90°,AB=AC,∠BCD=90°,∠BDC=60°,BC=2a.
(I)求證:平面ABD⊥平面ACD;
(Ⅱ)求二面角A-BD-C的正切值;
(Ⅲ)求三棱錐A-BCD的側(cè)面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow a$=(sinx,cosx),$\overrightarrow b$=(1,1).
(1)當(dāng)$\overrightarrow a$∥$\overrightarrow b$時,求tanx的值;
(2)若f(x)=$\overrightarrow a$•$\overrightarrow b$>m對一切x∈R恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知a,b,c分別為△ABC的三邊長,且$|\begin{array}{l}{a}&&{c}\\{c}&{a}&\\&{c}&{a}\end{array}|$=0,求證:△ABC是等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx.
(Ⅰ)求函數(shù)f(x)的圖象在x=1處的切線方程;
(Ⅱ)是否存在實(shí)數(shù)m,使得對任意的$x∈(\frac{1}{2},+∞)$,都有函數(shù)$y=f(x)+\frac{m}{x}$的圖象在$g(x)=\frac{e^x}{x}$的圖象的下方?若存在,請求出最大整數(shù)m的值;若不存在,請說理由.
(參考數(shù)據(jù):ln2=0.6931,ln3=1.0986,$\sqrt{e}=1.6487,\root{3}{e}=1.3956$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.統(tǒng)計表明某型號汽車在勻速行駛中每小時的耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)為y=$\frac{1}{128000}{x^3}-\frac{3}{80}$x+8(0<x<120)
(1)當(dāng)x=64千米/小時時,行駛1000千米耗油量多少升?
(2)若油箱有22.5升油,則該型號汽車最多行駛多少千米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,CD,GF為圓O的兩條切線,其中E,F(xiàn)分別為圓O的兩個切點(diǎn),∠FCD=∠DFG.
(1)求證:AB∥CD;
(2)證明:$\frac{ED}{EC}$=$\frac{BD}{AC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)橢圓$\frac{{x}^{2}}{2}$+y2=1在y軸正半軸上的頂點(diǎn)為M,右焦點(diǎn)為F,延長線段MF與橢圓交于N.
(1)求直線MF的方程;
(2)求$\frac{|MF|}{|FN|}$的值.

查看答案和解析>>

同步練習(xí)冊答案