已知直三棱柱ABC-A1B1C1中,∠BAC=90°,側面BCC1B1的面積為2,則直三棱柱ABC-A1B1C1外接球表面積的最小值為
 
考點:球的體積和表面積
專題:計算題,空間位置關系與距離
分析:設BC=2x,BB1=2y,則4xy=2,利用直三棱柱ABC-A1B1C1中,∠BAC=90°,可得直三棱柱ABC-A1B1C1外接球的半徑為
x2+y2
2xy
=1,即可求出三棱柱ABC-A1B1C1外接球表面積的最小值.
解答: 解:設BC=2x,BB1=2y,則4xy=2,
∵直三棱柱ABC-A1B1C1中,∠BAC=90°,
∴直三棱柱ABC-A1B1C1外接球的半徑為
x2+y2
2xy
=1,
∴直三棱柱ABC-A1B1C1外接球表面積的最小值為4π×12=4π.
故答案為:4π.
點評:本題考查三棱柱ABC-A1B確定1C1外接球表面積的最小值,考查基本不等式的運用,確定直三棱柱ABC-A1B1C1外接球的半徑的最小值是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在函數(shù)f(x)=
3x,x<1
f(x-1),x≥1
,則f(log310)=( 。
A、
10
3
B、
9
2
C、
10
9
D、
10
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
b
={3,4},
a
b
=5,|
a
-
b
|=2
5
,則|
a
|=( 。
A、5
B、25
C、2
5
D、
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a1
=2
i
-
j
+
k
,
a2
=
j
+3
j
-2
k
,
a3
=-2
i
+
j
-3
k
a4
=3
i
+2
j
+5
k
,
i
,
j
,
k
是空間兩兩垂直的單位向量是否存在實數(shù)λμγ,使
a4
a1
a2
a3
成立?不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某試驗范圍為[22,43],等分為21段,用分數(shù)法,則第一試點應安排在
 
處.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面內有n(n≥2)條直線,任何兩條都不平行,任何三條不過同一點,問交點的個數(shù)f(n)為多少?并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市教育局為了了解高三學生體育達標情況,對全市高三學生進行了體能測試,經分析,全市學生體能測試成績X服從正態(tài)分布N(80,σ2)(滿分為100分),已知P(X<75)=0.3,P(X≥95)=0.1,現(xiàn)從該市高三學生隨機抽取三位同學.
(1)求抽到的三位同學該次體能測試成績在區(qū)間[80,85),[85,95),[95,100]各有一位同學的概率;
(2)記抽到的三位同學該次體能測試成績在區(qū)間[75,85]的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y=(t2+t-1)x2-2(a+t)2x+(t2+3at+b)對任何實數(shù)t都與x軸交于P(1,0)點,又設拋物線C與x軸的另一交點為Q(m,0),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù) M>0,都有|f(x)|≤M 成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=x2+2ax+2.
(1)當a=-1時,求函數(shù)f(x)在(-∞,0]上的值域,判斷函數(shù)f(x)在(-∞,0]上是否為有界函數(shù),并說明理由;
(2)若函數(shù)f(x)在x∈[1,4]上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案