精英家教網 > 高中數學 > 題目詳情

【題目】對于定義在上的函數,有下述命題:①若是奇函數,則的圖象關于點對稱;②函數的圖象關于直線對稱,則為偶函數;③若對,有,則2的一個周期;④函數的圖象關于直線對稱.其中正確的命題是______.(寫出所有正確命題的序號)

【答案】①②③④

【解析】

①根據奇函數定義分析;②根據偶函數定義分析;③根據周期函數的定義分析;④根據函數的對稱性分析.

①:是奇函數的圖象關于點成中心對稱的圖象關于點成中心對稱,故正確;

②:是偶函數的圖象關于直線對稱的圖象關于直線對稱,故正確;

③:因為,所以,所以,所以,由此可知的一個周期,故正確;

④:因為的圖象與的圖象關于對稱,的圖象是由的圖象向右移動個單位得到的,的圖象是由的圖象向右移動個單位得到的,所以函數的圖象關于直線對稱,故正確.

故答案為:①②③④.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在路邊安裝路燈:路寬米,燈桿長米,且與燈柱120°角,路燈采用錐形燈罩,燈罩軸線與燈桿垂直且正好通過道路路面的中線.

1)求燈柱高的長度(精確到0.01米);

2)若該路燈投射出的光成一個圓錐體,該圓錐體母線與軸線的夾角是30°,寫出路燈在路面上投射出的截面圖形的邊界是什么曲線?寫出其相應的幾何量(精確到0.01米).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某圓的極坐標方程為

(1)圓的普通方程和參數方程;

(2)圓上所有點的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓:的上頂點為A,以A為圓心,橢圓的長半軸為半徑的圓與y軸的交點分別為、.

(1)求橢圓的方程;

(2)設不經過點A的直線與橢圓交于P、Q兩點,且,試探究直線是否過定點?若過定點,求出該定點的坐標,若不過定點,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地擬建造一座體育館,其設計方案側面的外輪廓線如圖所示:曲線是以點為圓心的圓的一部分,其中,是圓的切線,且,曲線是拋物線的一部分,,且恰好等于圓的半徑.

1)若米,米,求的值;

2)若體育館側面的最大寬度不超過75米,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知兩個不相等的非零向量,,兩組向量,,,,,,均由23排列而成,記,表示S所有可能取值中的最小值,則下列命題正確的是________.(寫出所有正確命題的編號)

S5個不同的值;②若,則無關;③若,則無關;④若,則;⑤若,,則的夾角為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點在拋物線上,則當點到點的距離與點到拋物線焦點距離之和取得最小值時,點的坐標為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形是邊長為2的菱形,且.四邊形是平行四邊形,且.點在平面內的射影為,,且上,四棱錐的體積為2.

(1)求證:平面平面;

(2)在上是否存在點,使平面?如果存在,是確定點的位置,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】據歷史記載,美日在中途島(Midway)海戰(zhàn)前,美方截獲了日方密碼電報,據美方已破譯的密碼得知,日方將向某島進行軍事活動,但關鍵含有地點的部分卻被日方換成了另一種密碼.經專家研究,估計是一種密匙密碼,且密匙為3位.所謂密匙密碼是指:將一段英文字母的明文(未加密前原文)經過對某一組數字(即密匙)的變換,改變成了另一組英文字母成為密文(加密后的文字)例如:明文: (不計空格,不計大小寫)在密匙為:1 9 2的條件下,變換過程如下圖所示:

s

t

u

d

e

n

t

1

9

2

1

9

2

1

t

c

w

e

n

p

u

則密文為:,試根據上面信息回答下面問題:

1)在密匙為111的條件下,填寫下表,并寫出密文;

s

t

u

d

e

n

t

密文____________________

2)若請?zhí)顚懴卤,并寫出密匙?/span>

s

t

u

d

e

n

t

密匙為_____________

3)若下面即是那段包含地點(Midway)的破譯不出的密文:,且此段密文也是3位密匙加密,試填寫下表,寫出密匙,并將此段密文翻譯成明文.(不必證明,寫出明文即可)

c

w

b

c

f

s

o

l

l

y

d

g

密匙為___________,明文為_________

查看答案和解析>>

同步練習冊答案