20.已知點(diǎn)P(x,y)滿足約束條件$\left\{\begin{array}{l}x-y+6≥0\\ x≤3\\ x+y+k≥0\end{array}\right.$,且z=2x+4y的最小值為6.
(1)常數(shù)k=-3;
(2)$\frac{y-2}{x+7}$的取值范圍為[-$\frac{1}{5}$,$\frac{7}{10}$].

分析 (1)作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義即可得到結(jié)論.
(2)根據(jù)直線斜率的公式進(jìn)行求解即可.

解答 解:(1)作出不等式組對(duì)應(yīng)的平面區(qū)域,
由z=2x+4y,得y=$-\frac{1}{2}x+\frac{z}{4}$,平移直線y=$-\frac{1}{2}x+\frac{z}{4}$,由圖象可知當(dāng)直線經(jīng)過(guò)點(diǎn)A時(shí),直線y=$-\frac{1}{2}x+\frac{z}{4}$的截距最小,此時(shí)z最小為6,
由$\left\{\begin{array}{l}{2x+4y=6}\\{x=3}\end{array}\right.$,得$\left\{\begin{array}{l}{x=3}\\{y=0}\end{array}\right.$,即A(3,0),
同時(shí)A也在直線x+y+k=0上,代入解得k=-3.
(2)$\frac{y-2}{x+7}$的幾何意義為區(qū)域內(nèi)的點(diǎn)到定點(diǎn)D(-7,2)的斜率,
由圖象知DC的斜率最大,DA的斜率最小,
由$\left\{\begin{array}{l}{x=3}\\{x-y+6=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=9}\end{array}\right.$,即C(3,9)
則DC的斜率k=$\frac{9-2}{3+7}$=$\frac{7}{10}$,
DA的斜率k=$\frac{-2}{3+7}$=-$\frac{1}{5}$,
則$\frac{y-2}{x+7}$的取值范圍為[-$\frac{1}{5}$,$\frac{7}{10}$]
故答案為:(1)-3;(2)[-$\frac{1}{5}$,$\frac{7}{10}$]

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,以及直線斜率的計(jì)算,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),$f(x)=\sqrt{x}$
(1)求f(9)和f(-4);
(2)求f(x)的解析式;
(3)當(dāng)x∈A時(shí),f(x)∈[-7,3],求區(qū)間A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.滿足{0,1}⊆P⊆{0,1,2,3,4,5}的集合P的個(gè)數(shù)是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知集合A={x|-1≤x≤6},B={x|m+1≤x≤3m-1}.
(1)若B⊆A,求實(shí)數(shù)m的取值集合C;
(2)求函數(shù)f(x)=x2-2ax+3,x∈C的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知關(guān)于x的方程x2+zx+1+2i=0有實(shí)根,則復(fù)數(shù)z的模的最小值為$\sqrt{2\sqrt{5}+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)z=3+4i(i是虛數(shù)單位),則$|z|+\overline{z}$=8-4i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.不等式組$\left\{\begin{array}{l}{x+2y≥0}\\{x-3y≥0}\\{{x}^{2}+{y}^{2}≤4}\end{array}\right.$表示的平面區(qū)域的面積為(  )
A.$\frac{π}{2}$B.$\frac{3}{2}$πC.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某市組織高一全體學(xué)生參加計(jì)算機(jī)操作比賽,等級(jí)分為1至10分,隨機(jī)調(diào)閱了A、B兩所學(xué)校各60名學(xué)生的成績(jī),得到樣本數(shù)據(jù)如表:
B校樣本數(shù)據(jù)統(tǒng)計(jì)表
成績(jī)(分)12345678910
人數(shù)(個(gè))000912219630
(Ⅰ)計(jì)算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進(jìn)行比較.
(Ⅱ) 記事件C為“A校學(xué)生計(jì)算機(jī)優(yōu)秀成績(jī)高于B校學(xué)生計(jì)算機(jī)優(yōu)秀成績(jī)”.假設(shè)7分或7分以上為優(yōu)秀成績(jī),兩校學(xué)生計(jì)算機(jī)成績(jī)相互獨(dú)立.根據(jù)所給樣本數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求C的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知直線l與直線4x-3y+5=0垂直,并且與兩坐標(biāo)軸圍成的三角形的面積為24,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案