8.已知集合A={x|-1≤x≤6},B={x|m+1≤x≤3m-1}.
(1)若B⊆A,求實數(shù)m的取值集合C;
(2)求函數(shù)f(x)=x2-2ax+3,x∈C的最小值.

分析 (1)分B是否是空集討論,從而解得;
(2)結(jié)合二次函數(shù)的性質(zhì)及集合C,討論對稱軸,從而求最小值.

解答 解:(1)當(dāng)B=∅時,m+1>3m-1,所以m<1滿足題意;
當(dāng)B≠∅時,由題意$\left\{{\begin{array}{l}{m+1≤3m-1}\\{m+1≥-1}\\{3m-1≤6}\end{array}}\right.$,解得$1≤m≤\frac{7}{3}$;
綜上知:實數(shù)m的取集合$C=\{m|m≤\frac{7}{3}\}$
(2)①當(dāng)$a≥\frac{7}{3}$時,$f{(x)_{min}}=f(\frac{7}{3})=\frac{76-42a}{9}$;
②當(dāng)a<$\frac{7}{3}$時,$f{(x)_{min}}=f(a)=-{a^2}+3$.

點評 本題考查了集合的化簡運算及二次函數(shù)的性質(zhì)的應(yīng)用,同時考查了分類討論的思想應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.變量x,y滿足條件$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,求z=2x-3y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)計算2lg5+$\frac{2}{3}lg8+lg5•lg20+{(lg2)^2}$
(2)若${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=\sqrt{7}$,求$\frac{{x+{x^{-1}}}}{{{x^2}+{x^{-2}}-3}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥3}\\{f(x+1),x<3}\end{array}\right.$,則f(1+log23)的值為(  )
A.$\frac{1}{24}$B.$\frac{1}{12}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平行六面體ABCD-A′B′C′D′中,AB=4,AD=6,AA′=8,∠BAD=90°,∠BAA′=∠DAA′=60°,P是CC1的中點.
(Ⅰ)用$\overrightarrow{AB},\overrightarrow{AD},\overrightarrow{AA'}$表示$\overrightarrow{AP}$;
(Ⅱ)求AP的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.實系數(shù)一元二次方程x2+ax+b=0有一個虛數(shù)根的模為2,則a的取值范圍是(-4,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知點P(x,y)滿足約束條件$\left\{\begin{array}{l}x-y+6≥0\\ x≤3\\ x+y+k≥0\end{array}\right.$,且z=2x+4y的最小值為6.
(1)常數(shù)k=-3;
(2)$\frac{y-2}{x+7}$的取值范圍為[-$\frac{1}{5}$,$\frac{7}{10}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦點左、右分別為F1、F2,點P是雙曲線上一點,且$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=0,P到原點的距離為2,則△PF1F2的面積的取值范圍是(  )
A.(0,2)B.(1,2)C.(2,4)D.(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A,B,C所對的邊分別為a,b,c,且a,b,c依次成等差數(shù)列.
(Ⅰ)若B=$\frac{π}{6}$,b=1+$\sqrt{3}$,求△ABC的面積;
(Ⅱ)記M=(sinA+sinC)cosB+2$\sqrt{3}{sin^2}$B,求M的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案