分析 (1)將x=1代入不等式,解不等式|1-a|<1即可;
(2)問題轉化為${(x-\frac{1}{x})}_{max}$<a<${(x+\frac{1}{x})}_{min}$,分別求出函數(shù)y=x-$\frac{1}{x}$的最大值和函數(shù)y=x+$\frac{1}{x}$的最小值即可.
解答 解:(1)f(1)=|1-a|<1,
則-1<1-a<1,解得:0<a<2;
(2)|a-x|<$\frac{1}{x}$?x-$\frac{1}{x}$<a<x+$\frac{1}{x}$,
故對一切x∈(0,1]都有:
${(x-\frac{1}{x})}_{max}$<a<${(x+\frac{1}{x})}_{min}$,
而函數(shù)y=x-$\frac{1}{x}$,y′=1+$\frac{1}{{x}^{2}}$>0,故函數(shù)y=x-$\frac{1}{x}$是增函數(shù),
y=x+$\frac{1}{x}$,y′=1-$\frac{1}{{x}^{2}}$=$\frac{{x}^{2}-1}{{x}^{2}}$<0,故函數(shù)y=x+$\frac{1}{x}$是減函數(shù),
故${(x-\frac{1}{x})}_{max}$=0,${(x+\frac{1}{x})}_{min}$=2
故a∈(0,2),
故a=1.
點評 本題考查了解絕對值不等式問題,考查函數(shù)的最值問題,是一道中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{10}$ | B. | $\sqrt{13}$ | C. | $\sqrt{14}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com