【題目】非空集合關(guān)于運算滿足:① 對任意,都有;② 存在使對一切都有,則稱是關(guān)于運算的融洽集,現(xiàn)有下列集合及運算:

是非負整數(shù)集,運算:實數(shù)的加法;

是偶數(shù)集,運算:實數(shù)的乘法;

是所有二次三項式組成的集合,運算:多項式的乘法;

運算:實數(shù)的乘法;

其中為融洽集的是________

【答案】①④

【解析】

逐一驗證幾個選項是否分別滿足“融洽集”的兩個條件,若兩個條件都滿足,是“融洽集”,有一個不滿足,則不是“融洽集”

①對于任意非負整數(shù),仍為非負整數(shù),;取,,故①符合題意;

②對于任意偶數(shù),仍為偶數(shù),;但是不存在,使對一切都有,故②不符合題意;

③對于是所有二次三項式組成的集合,若,不再是二次三項式,故③不符合題意;

④對于,設(shè),,,;取,,故④符合題意,

故答案為:①④

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.

(1)E的方程;

(2)設(shè)過點A的動直線lE相交于PQ兩點.OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)過多年的努力,炎陵黃桃在國內(nèi)乃至國際上逐漸打開了銷路,成為炎陵部分農(nóng)民脫貧致富的好產(chǎn)品.為了更好地銷售,現(xiàn)從某村的黃桃樹上隨機摘下了100個黃桃進行測重,其質(zhì)量分布在區(qū)間內(nèi)(單位:克),統(tǒng)計質(zhì)量的數(shù)據(jù)作出其頻率分布直方圖如圖所示:

(1)按分層抽樣的方法從質(zhì)量落在,的黃桃中隨機抽取5個,再從這5個黃桃中隨機抽2個,求這2個黃桃質(zhì)量至少有一個不小于400克的概率;

(2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該村的黃桃樹上大約還有100000個黃桃待出售,某電商提出兩種收購方案:

A.所有黃桃均以20/千克收購;

B.低于350克的黃桃以5/個收購,高于或等于350克的以9/個收購.

請你通過計算為該村選擇收益最好的方案.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在梯形中,,,,,的中點,的交點,以為折痕把折起,使點到達點的位置,且,如圖2.

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A{x|x6n1,nN*},B{x|x2n,nN*},將AB的所有元素從小到大依次排列構(gòu)成一個數(shù)列{an}.記Sn為數(shù)列{an}的前n項和,若Sm3014,則正整數(shù)m值為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了適應(yīng)高考改革,某中學推行“創(chuàng)新課堂”教學.高一平行甲班采用“傳統(tǒng)教學”的教學方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學方式授課,為了比較教學效果,期中考試后,分別從兩個班中各隨機抽取名學生的成績進行統(tǒng)計分析,結(jié)果如下表:(記成績不低于分者為“成績優(yōu)秀”)

分數(shù)

甲班頻數(shù)

乙班頻數(shù)

(1)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認為“成績優(yōu)秀與教學方式有關(guān)”?

甲班

乙班

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

(2)在上述樣本中,學校從成績?yōu)?/span>的學生中隨機抽取人進行學習交流,求這人來自同一個班級的概率.

參考公式:,其中.

臨界值表

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正實數(shù)xy滿足等式

(Ⅰ)試將y表示為x的函數(shù),并求出定義域和值域;

(Ⅱ)是否存在實數(shù)m,使得函數(shù)有零點?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】臨川一中實驗學校坐落在撫州火車站附近,在校區(qū)東邊(如圖),有一直徑為8米的半圓形空地,現(xiàn)計劃移植一古樹,但需要有輔助光照.半圓周上的處恰有一可旋轉(zhuǎn)光源滿足古樹生長的需要,該光源照射范圍是,點在直徑上,且.

1)若,求的長;

2)設(shè),求該空地種植古樹的最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)log4(4x1)kx(k∈R)是偶函數(shù).

(1)k的值;

(2)設(shè)g(x)log4,若函數(shù)f(x)g(x)的圖象有且只有一個公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案