【題目】已知直線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.直線(xiàn)過(guò)點(diǎn).

(1)若直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的值;

(2)求曲線(xiàn)的內(nèi)接矩形的周長(zhǎng)的最大值.

【答案】(1)2;(2)16.

【解析】試題分析:1)將直線(xiàn)l和橢圓C的轉(zhuǎn)化為普通方程,左焦點(diǎn)F在直線(xiàn)l上,求解出直線(xiàn)1方程與橢圓C聯(lián)立方程組,求解A,B坐標(biāo),利用兩點(diǎn)之間的距離公式求解|FA||FB|的值.
2)設(shè)橢圓在第一象限上一點(diǎn)Pacosθbsinθ),內(nèi)接矩形周長(zhǎng)為: ,即得答案.

試題解析:

(1)已知曲線(xiàn)的標(biāo)準(zhǔn)方程為 ,則其左焦點(diǎn)為,則,將直線(xiàn)的參數(shù)方程與曲線(xiàn)的方程 聯(lián)立,得,則.

(2)由曲線(xiàn)的方程為 ,可設(shè)曲線(xiàn)上的動(dòng)點(diǎn),則以為頂點(diǎn)的內(nèi)接矩形周長(zhǎng)為,因此該內(nèi)接矩形周長(zhǎng)的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若曲線(xiàn)在點(diǎn)處的切線(xiàn)互相垂直,求 值;

(2)討論函數(shù)的零點(diǎn)個(gè)數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)雙曲線(xiàn)C:=1的右焦點(diǎn)F且與x軸不重合的直線(xiàn)交雙曲線(xiàn)C于A、B兩個(gè)點(diǎn),定點(diǎn)D(,0).

(1)當(dāng)直線(xiàn)AB垂直于x軸時(shí),求直線(xiàn)AD的方程.

(2)設(shè)直線(xiàn)AD與直線(xiàn)x=1相交于點(diǎn)E,求證:FD∥BE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四大名著是中國(guó)文學(xué)史上的經(jīng)典作品,是世界寶貴的文化遺產(chǎn).某學(xué)校舉行的“文學(xué)名著閱讀月”活動(dòng)中,甲、乙、丙、丁、戊五名同學(xué)相約去學(xué)校圖書(shū)室借閱四大名著《紅樓夢(mèng)》、《三國(guó)演義》、《水滸傳》、《西游記》(每種名著均有若干本),要求每人只借閱一本名著,每種名著均有人借閱,且甲只借閱《三國(guó)演義》,則不同的借閱方案種數(shù)為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, .

1)若的充分不必要條件,求實(shí)數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】指出下列各組集合之間的關(guān)系:

1

2;

3

4,

5,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了日至日的每天晝夜溫度與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):

日期

溫差

發(fā)芽數(shù)(顆)

由表中根據(jù)日至的數(shù)據(jù),求的線(xiàn)性回歸方程中的,則______,若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)顆,則認(rèn)為得到的線(xiàn)性回歸方程是可靠的,則求得的線(xiàn)性回歸方程____.(填“可靠”或“不可幕”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若是第二象限角,試分別確定,,的終邊所在的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(I)若函數(shù)處取得極值,求實(shí)數(shù)的值;并求此時(shí)上的最大值;

()若函數(shù)不存在零點(diǎn),求實(shí)數(shù)a的取值范圍;

查看答案和解析>>

同步練習(xí)冊(cè)答案