對(duì)正整數(shù)n,設(shè)曲線y=xn(1-x)在x=2處的切線與y軸交點(diǎn)的縱坐標(biāo)為an,則數(shù)列{}的前n項(xiàng)和的公式是(  )

(A)2n          (B)2n-2

(C)2n+1              (D)2n+1-2

D.∵y′|x=2=-2n-1(n+2),

∴切線方程為:y+2n=-2n-1(n+2)(x-2),

令x=0,求出切線與y軸交點(diǎn)的縱坐標(biāo)為

y0=(n+1)2n,

所以=2n,則數(shù)列{}的前n項(xiàng)和Sn=2n+1-2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)正整數(shù)n,設(shè)曲線y=xn(1-x)在x=2處的切線與y軸交點(diǎn)的縱坐標(biāo)為an,則數(shù)列{
ann+1
}
的前n項(xiàng)和的公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)正整數(shù)n,設(shè)曲線y=xn(1-x)在x=2處的切線與y軸交點(diǎn)的縱坐標(biāo)為an,則數(shù)列{
an
n+1
}
的前n項(xiàng)和的公式是( 。
A、2n
B、2n-2
C、2n+1
D、2n+1-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)正整數(shù)n,設(shè)曲線y=xn(1-x)在x=2處的切線與y軸交點(diǎn)的縱坐標(biāo)為an,則數(shù)列{
ann+1
}
的前n項(xiàng)和Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)正整數(shù)n,設(shè)曲線y=xn(1-x)在x=2處的切線與y軸交點(diǎn)的縱坐標(biāo)為an
(i)an=
(n+1)2n
(n+1)2n
;
(ii)數(shù)列{
a nn+1
}
的前n項(xiàng)和Sn=
2n+1-2
2n+1-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江西省高三上學(xué)期開(kāi)學(xué)模擬考試?yán)砜茢?shù)學(xué)卷 題型:填空題

對(duì)正整數(shù)n,設(shè)曲線y=xn(1-x)在x=2處的切線與y軸交點(diǎn)的縱坐標(biāo)為an,則數(shù)列的前n項(xiàng)和為      。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案