若函數(shù)f(x)=2x+2-x與g(x)=2x-2-x的定義域均為R,則( 。
A、f(x)與g(x)均為偶函數(shù)
B、f(x)為奇函數(shù),g(x)為偶函數(shù)
C、f(x)為偶函數(shù),g(x)為奇函數(shù)
D、f(x)與g(x)均為奇函數(shù)
考點(diǎn):函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先應(yīng)了解奇函數(shù)偶函數(shù)的性質(zhì),即偶函數(shù)滿足公式f(-x)=f(x),奇函數(shù)滿足公式g(-x)=-g(x).然后在判斷定義域?qū)ΨQ性后,把函數(shù)f(x)=2x+2-x與g(x)=2x-2-x代入驗(yàn)證.即可得到答案.
解答: 解:由偶函數(shù)滿足公式f(-x)=f(x),奇函數(shù)滿足公式g(-x)=-g(x).
對(duì)函數(shù)f(x)=2x+2-x有f(-x)=2-x+2x滿足公式f(-x)=f(x)所以為偶函數(shù).
對(duì)函數(shù)g(x)=2x-2-x有g(shù)(-x)=2-x-2x=-g(x).滿足公式g(-x)=-g(x)所以為奇函數(shù).
故選:C.
點(diǎn)評(píng):此題主要考查函數(shù)奇偶性的判斷,對(duì)于偶函數(shù)滿足公式f(-x)=f(x),奇函數(shù)滿足公式g(-x)=-g(x)做到理解并記憶,以便更容易的判斷奇偶性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的前n項(xiàng)和為Sn,則下列四個(gè)命題:
①若數(shù)列{an}是遞增數(shù)列,則數(shù)列{Sn}也是遞增數(shù)列;
②數(shù)列{Sn}是遞增數(shù)列的充要條件是數(shù)列{an}的各項(xiàng)均為正數(shù);
③若{an}是等差數(shù)列(公差d≠0),則S1•S2…Sk=0的充要條件是a1•a2…ak=0;
④若{an}是等比數(shù)列,則S1•S2…Sk=0(k≥2,k∈N)的充要條件是an+an+1=0.
其中,正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+2x+c(x∈R)的值域?yàn)閇0,+∞),則f(1)的最小值為( 。
A、4B、5C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log2(2x+1)的值域?yàn)椋ā 。?/div>
A、(0,+∞)
B、[0,+∞)
C、(1,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:存在實(shí)數(shù)x,使sinx=
π
2
成立;命題q:x2-3x+2<0的解集為(1,2).給出下列四個(gè)結(jié)論:
①命題“p∧q”是真命題;
②命題“p∧¬q”是假命題;
③命題“¬p∧q”是真命題;
④命題“¬p∨¬q”是假命題.
其中正確的結(jié)論是( 。
A、②③B、②④
C、①②④D、①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“x=1”是“x2≠1”的( 。
A、必要不充分條件
B、充分不必要條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有半徑為r的半圓形鐵皮卷成一個(gè)圓錐筒,那么這個(gè)圓錐筒的高為( 。
A、
3
πr
B、
3
r
C、
3
3
2
r
D、
3
2
r

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知a2=b2+c2-bc,則角A為( 。
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式(x-1)2<logax在x∈(1,2)內(nèi)恒成立,實(shí)數(shù)a的取值范圍為( 。
A、(1,2]
B、(
2
2
,1)
C、(1,
2
D、(
2
,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案