12.已知函數(shù)f(x)是定義在R上的奇函數(shù),已知x≥0時(shí),f(x)=x(2-x).
(1)求函數(shù)f(x)的解析式.
(2)畫出奇函數(shù)f(x)的圖象.

分析 (1)當(dāng)x<0時(shí),-x>0,故f(-x)=-x(2+x),從而利用奇函數(shù)得f(x)=x(2+x),從而寫出解析式;
(2)分段作出函數(shù)的圖象即可.

解答 解:(1)當(dāng)x<0時(shí),-x>0,
則f(-x)=-x(2+x),
∵函數(shù)是奇函數(shù),
∴f(-x)=-f(x),
∴f(x)=-f(-x)=x(2+x)
∴函數(shù)f(x)的解析式為$f(x)=\left\{\begin{array}{l}x(2-x),(x≥0)\\ x(2+x),(x<0)\end{array}\right.$;
(2)作其圖象如下,

點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性的應(yīng)用及學(xué)生的作圖能力,注意分段作出函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,線段AB過x軸正半軸上一定點(diǎn)M(m,0),端點(diǎn)A、B到x軸距離之積為2m,以x軸為對(duì)稱軸,過A,O,B三點(diǎn)作拋物線C.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)P(n,2)為拋物線C上的點(diǎn),過P(n,2)作傾斜角互補(bǔ)的兩直線PS,PT,分別交拋物線C于S,T.求證:直線ST的斜率為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的上方
(1)求圓C的方程;
(2)設(shè)過點(diǎn)P(1,1)的直線l1被圓C截得的弦長(zhǎng)等于2$\sqrt{3}$,求直線l1的方程;
(3)過點(diǎn)M(1,0)的直線與圓C交于A,B兩點(diǎn)(A在x軸上方),問在x軸正半軸上是否存在點(diǎn)N,使得x軸平分∠ANB?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)二次函數(shù)y1=a(x-x1)(x-x2)(a≠0,x1≠x2)的圖象與一次函數(shù)y2=dx+e(d≠0)的圖象交于點(diǎn)(x1,0),若函數(shù)y=y2+y1的圖象與x軸僅有一個(gè)交點(diǎn),則( 。
A.a(x2-x1)=dB.a(x1-x2)=dC.a(x1-x22=dD.a(x1+x22=d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.關(guān)于x的方程x2+(a+1)x+a+b+1=0(a≠0,a、b∈R)的兩實(shí)根為x1,x2,若0<x1<1<x2<2,則$\frac{a}$的取值范圍是(-$\frac{5}{4}$,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓C同時(shí)滿足下列三個(gè)條件:①與y軸相切;②在直線y=x上截得弦長(zhǎng)為$\sqrt{7}$;③圓心在直線x-3y=0上,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)=|x+1|+|x-a|為偶函數(shù),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若a、b、c成公差為2的等差數(shù)列,且5sinA=3sinB,則角C=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.過點(diǎn)(1,2)且與2x-y+1=0平行的直線方程為2x-y=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案