【題目】如圖,AB與圓O相切于點B,CD為圓O上兩點,延長AD交圓O于點E,BF∥CD且交ED于點F
(Ⅰ)證明:△BCE∽△FDB;
(Ⅱ)若BE為圓O的直徑,∠EBF=∠CBD,BF=2,求ADED.
【答案】解:
(Ⅰ)證明:∵BF∥CD;
∴∠EDC=∠BFD,
又∠EBC=∠EDC,
∴∠EBC=∠BFD,
又∠BCE=∠BDF,
∴△BCE∽△FDB.
(Ⅱ)因為∠EBF=∠CBD,所以∠EBC=∠FBD,
由(Ⅰ)得∠EBC=∠BFD,所以∠FBD=∠BFD,
又因為BE為圓O的直徑,
所以△FDB為等腰直角三角形,BD= BF= ,
因為AB與圓O相切于B,所以EB⊥AB,即ADED=BD2=2
【解析】(Ⅰ)根據(jù)BF∥CD便有∠EDC=∠BFD,再根據(jù)同一條弦所對的圓周角相等即可得出∠EBC=∠BFD,∠BCE=∠BDF,這樣即可得出:△BCE與△FDB相似;(Ⅱ)根據(jù)條件便可得出∠EBC=∠FBD,再由上面即可得出∠FBD=∠BFD,這樣即可得出△FDB為等腰直角三角形,從而可求出BD= ,根據(jù)射影定理即可求出ADED的值.
【考點精析】掌握相似三角形的判定是解答本題的根本,需要知道相似三角形的判定方法:兩角對應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對應(yīng)成比例,兩三角形相似(SSS).
科目:高中數(shù)學 來源: 題型:
【題目】如圖,點A與點A′在x軸上,且關(guān)于y軸對稱,過點A′垂直于x軸的直線與拋物線y2=2x交于兩點B,C,點D為線段AB 上的動點,點E在線段AC上,滿足 .
(1)求證:直線DE與此拋物線有且只有一個公共點;
(2)設(shè)直線DE與此拋物線的公共點F,記△BCF與△ADE的面積分別為S1、S2 , 求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定橢圓C: =1(a>b>0),稱圓心在原點O,半徑為 的圓是橢圓C的“準圓”.若橢圓C的一個焦點為F( ,0),其短軸上的一個端點到F的距離為 .
(Ⅰ)求橢圓C的方程和其“準圓”方程;
(Ⅱ)點P是橢圓C的“準圓”上的動點,過點P作橢圓的切線l1 , l2交“準圓”于點M,N.
(。┊旤cP為“準圓”與y軸正半軸的交點時,求直線l1 , l2的方程并證明l1⊥l2;
(ⅱ)求證:線段MN的長為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1= ,an+1=10an+1.
(1)證明數(shù)列{an+ }是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足bn=lg(an+ ),Tn為數(shù)列{ }的前n項和,求證:Tn< .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的四邊形ABCD中,∠BAD=90°,∠BCD=120°,∠BAC=60°,AC=2,記∠ABC=θ.
(Ⅰ)求用含θ的代數(shù)式表示DC;
(Ⅱ)求△BCD面積S的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,a3=9,且an=an﹣1+λn﹣1(n≥2).
( I)求λ的值及數(shù)列{an}的通項公式;
( II)設(shè) ,且數(shù)列{bn}的前n項和為Sn , 求S2n .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若存在正常數(shù)a,b,使得x∈R有f(x+a)≤f(x)+b恒成立,則稱f(x)為“限增函數(shù)”.給出下列三個函數(shù):①f(x)=x2+x+1;② ;③f(x)=sin(x2),其中是“限增函數(shù)”的是( )
A.①②③
B.②③
C.①③
D.③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準x(噸),一位居民的月用水量不超過x的部分按平價收費,超過x的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為X,求X的分布列與數(shù)學期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準x(噸),估計x的值(精確到0.01),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將一顆骰子投擲兩次,第一次出現(xiàn)的點數(shù)記為a,第二次出現(xiàn)的點數(shù)記為b,設(shè)兩條直線l1:ax+by=2與l2:x+2y=2平行的概率為P1 , 相交的概率為P2 , 則點P(36P1 , 36P2)與圓C:x2+y2=1098的位置關(guān)系是( )
A.點P在圓C上
B.點P在圓C外
C.點P在圓C內(nèi)
D.不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com